Уран: факты и фактики. Так чем же США будут заряжать свои реакторы

  • Дата: 08.02.2023

Выглядит картина достаточно оптимистично: не то чтобы мы были обеспечены ресурсами навечно, но время у человечества есть. Как оно его использует — это другое дело. Однако если потребление будет расти, и через 20, 40, 100 лет не произойдет качественного прорыва в энергетическом развитии, то однозначно придет тот момент, когда человечество упрется в пустые карьеры и свистящий в скважинах ветер, и вслед за этим наступит коллапс. Откат к темным векам, к технологиям 19 столетия без шанса на возрождение.

Мы этого не узнаем — лишь на седую старость наших еще не рожденных правнуков может выпасть участь видеть эпоху заката человечества.

Но время еще есть, впереди десятилетия нарастающей добычи ресурсов и развития технологий. У грядущих поколений есть шанс выстроить благополучное будущее.

Я не тешу себя иллюзиями увидеть, как автобаны заполнят уютные электромобили, как по выделенным полосам городских артерий будут спешить на работу тысячи велосипедистов, сбивая капли чистейшей росы с листьев городских деревьев. Но кое-что уже можно изменить в ближайшие десятилетия.

Вот так выглядит динамика мирового производства электроэнергии (Год — млрд кВт/час):

1890 — 9
1900 — 15
1914 — 37,5
1950 — 950
1960 — 2300
1970 — 5000
1980 — 8250
1990 — 11800
2000 — 14500
2005 — 18138,3
2007 — 19894,9

Миру нужно больше электроэнергии, чтобы прятаться от темноты в ярко освещенных городах, привлекать стайки покупателей к витринам, а также растить, строить и добывать.

37% от всей произведённой энергии расходует промышленность: станки должны работать 24 часа в сутки, им нужно много электричества. Транспорт забирает себе еще 20%. В личных целях люди всей планеты используют еще 11% — и 5 % остается на коммерческое потребление (освещение, отопление и охлаждение коммерческих зданий, водоснабжение и канализация). Куда делись еще 27%? Потерялись при производстве и передаче электроэнергии.

Такие дела, а что поделать.

Вот такие виды топлива использовались при генерации электроэнергии в далеком 1973 году:

А вот как ситуация выглядела в 2011 году:

Нефть подорожала, ее место заменил газ. У кого не хватило денег на то и другое, жжет уголек. ГРЭС в мире не то чтобы стало меньше, просто они не поспели за увеличивавшимися в 4 раза объемами генерации электричества. Атомные электростанции упорно отвоевывают свое место под солнцем, но недостаточно быстро. О них и поговорим.

Очевидно, что производить электроэнергию, сжигая мазут, газ или уголь — дело глупое. Гораздо более разумно изготавливать из них полимеры, пластмассы и извлекать редкоземельные металлы. А уран ресурс такой — только на электричество и войну годен.

Генерация электроэнергии с помощью ядерных технологий — процесс чрезвычайно сложный. Чего стоит только добыча урана.

Вообще, если речь идет об уране, нужно сразу понять: это сложно. Сложно его добывать, сложно его перерабатывать, сложно запускать на нем реакторы, сложно читать об этом, сложно понять и сложно рассказывать.

Но я попробую.

Добывают уран из урановых руд. Это могут быть самые разные минеральные образования, главное, чтобы в них содержался уран. При этом, если урана более 0,3%, то это уже супербогатые залежи, и если их более 59 тыс. тонн — то это очень крупное месторождение. Вот такие дела.

Если у вас имеется такое месторождение, то вы добываете оттуда руду шахтным способом. Но богатых руд в мире остается все меньше, а это значит, что сложности начинаются уже с этого этапа.

Чтобы добыть уран из бедных руд, вам нужно закачать под землю, внимание, серную кислоту и затем откачать ее обратно, уже с ураном. Серную кислоту, Карл! Кем нужно быть, чтобы работать на добыче урана? Серная кислота иногда, бывает, не подходит, поэтому применяется другая магия, на которой мы не будем останавливаться.

Из раствора, который мы получили, нужно выделить уран, при том, что его содержание может быть десятые доли на литр. Для этого процесса требуются множественные окислительно-восстановительные реакции, чтобы избавиться от каждого нежелательного попутчика.

Затем требуется получить уран в твердом состоянии, но перед этим очистить его от примесей. На этом этапе применяется уже азотная кислота.

И теперь можно загружать в реактор? — Не-а, теперь начинаем собственно обогащение урана посредством разделения изотопов. На выходе получаем обогащенную смесь и обедненную. Методов добиться этого добрый десяток. Кто-нибудь еще считает, что этим занимаются действительно химики, а не маги высшей категории?

И лишь после всех этапов на выходе получаем ТВЭЛы — тепловыделяющие элементы, наполненные таблетками ядерного топлива.

Сложно? По-моему очень. И, что показательно, по добыче урана Россия находится на 6 месте в мире, однако по обогащению —на первом.

Это вам не седаны собирать.

Для того, чтобы получить 20 тонн уранового топлива, требуется обогатить 153 тонны природного урана. Однако одна тонна обогащенного урана выделяет столько же тепла, сколько 1 миллион 350 тысяч тонн нефти или природного газа.

Теперь понятно, почему жечь газ ради электричества глупо?

Только вот после того, как мы добудем, обогатим уран, построим архисложную АЭС, запустим ее, нам нужно что-то сделать с отработанным ядерным топливом.

Отслужившие свой срок ТВЭЛы очень радиоактивны и очень горячи. После извлечения из активной зоны реактора их нужно выдержать лет 5 в бассейне выдержки, а затем отправить в хранилище, где он будет «выдыхаться», остывая от радиоактивного излучения. После этого с ним станет проще работать и можно будет захоронить навечно, а лучше переработать, в процессе чего можно извлечь полезные элементы, а отходы все же отправить на хранение куда-нибудь подальше.

Очевидно, что такие производственные процессы явно не только не по карману многим странам, но и просто сложны в эксплуатации. Рабочая культура на таком производстве — это не упражнение в духе модных корпораций. Наплевательское отношение здесь — бух! — и чернобыльская зона отчуждения готова.

Отсюда и медленные темпы постройки АЭС по всему миру. Присосаться к газовой трубе все же гораздо проще. Так может, атомная энергетика невыгодна?

Я нашел одну любопытную табличку. Правда, на иностранном языке. В таблице приведены данные по количеству полученных единиц энергии на каждую затраченную. Чем выше значение — тем перспективнее направление.

Что мы видим: гидроэлектростанции — это круто, особенно большие. Они на первом месте. Но большие и удобные реки есть не везде.

Ветрогенераторы (в конце таблички) — тоже неплохо, но не везде дуют сильные и постоянные ветра. Тем более, что тут встает вопрос аккумулирования энергии про запас, ветер может и стихнуть. Газ, уголь, а уже тем более солнце — все недостаточно эффективно, в отличие от ядерной энергетики.

Nuclear diffusion enrichment — метод обогащения урана посредством газовой диффузии, сложный и энергозатратный. Но даже он наносит серьезный удар по газу, не говоря уж об угле.

Nuclear centrifuge enrichment — метод обогащения, называемый газовым центрифугированием. Современный метод с уменьшенным энергопотреблением, к слову, основной промышленный метод разделения изотопов в России. Нокаутирующий удар по любым другим способам получения электроэнергии, если у вас только под рукой нет хорошей речки в ущелье, которую вы можете перегородить.

Поэтому АЭС хотят многие, но далеко не всем по силам ее построить и эксплуатировать.

Однако, если вы все же решите приобрести для вашей страны пару ядерных реакторов, вы знаете куда обратиться: РосАтом предложит вам линейку безопасных ядерных электростанций по доступной цене с сервисным обслуживанием.

У русских есть хобби: собирать свои автомобили и ругать их. Но у них есть и работа: строить чудовищно сложные проекты и гордиться ими.

Только тут такое дело. Урана в мире достаточно много, он есть везде: в земле, воздухе, в воде. Только извлечь его — задачка та еще. Те же запасы, которые можно извлечь, достаточно ограниченны.

В мире всего 5 327 200 тонн этого добра, добывают же по 59 637 тонн ежегодно, и объемы добычи продолжают увеличиваться. Запасов хватит на 89 лет максимум.

Не очень оптимистично?

А что поделать. Но есть способы и оттянуть приближения дна:

Во-первых , уран добывают из старых ядерных бомб. Хранить их вечно все равно нельзя.
Во-вторых , уран по новой добывают из старых месторождений. Технологии-то не стоят на месте.

Однако уже сейчас 21% урана, потребляемого энергетикой, поступает из вторичных источников. Так что удастся ли продлить атомный век, перерабатывая старые атомные бомбы, неизвестно.

Россия занимает 3 место по залежам урана — 487 200 тонн 9,15% от мировых (на первом — Австралия, на втором — Казахстан). По добыче, как я говорил, мы на 6 месте (3 135 тонн в год) — не торопимся никуда. А вот по обогащению — на первом, оставив далеко позади конкурентов. Наших запасов при нынешних объемах добычи хватит на 155 лет. Да и запас стареющих атомных бомб у нас более чем внушителен.

Можно расслабиться?

Не стоит. Уран — это не панацея. Это очень эффективный ресурс, но грязный в производстве и опасный в обращении. Развивать атомную энергетику необходимо, однако нужно двигаться дальше.

Либералы спрашивают, что будет с Россией, когда кончится нефть (газ, уран, если хотите)?

К тому времени, когда они кончатся, наши дома будут снабжать электричеством термоядерные электростанции, и на ядерных двигателях мы будем летать к соседним планетам за ресурсами.

И нет, я не скажу за все человечество, но мы — русские — будем заниматься именно этим.

Однако об этом в следующей статье.

Сергей Черкасов.

Геологи из нескольких американских, немецких и швейцарских университетов заявили о том, что необходимо пересмотреть представления об условиях, в которых могут образовываться месторождения урана. О своем исследовании они рассказали в журнале Nature Communications.

Один из самых распространенных типов месторождений урана, который используется в атомных электростанциях, - так называемые инфильтрационные месторождения в песчаниках. Уран добывают из минерала уранинита (с идеализированной формулой UO2, в природе он содержит как UO2, так и UO3), находящегося в ролловых залежах в песчанике на большой глубине. Считается, что месторождения урана формируются на протяжении миллионов лет в результате реакций неорганических соединений.

Ученые обнаружили новые свидетельства того, что живые микроорганизмы, бактерии, могут генерировать другой вид урана, находящийся в некристаллическом виде. Химические и физические свойства этого соединения отличают его от уранинита, образовавшегося из неорганичекого вещества. К такому выводу ученые пришли, изучая состав урана на разрабатывающихся и неразрабатывающихся участках месторождений в Вайоминге, где была найдена некристаллическая форма урана биологического происхождения. Эта находка позволила ученым предположить, что уран может образовываться естественным путем в рудных месторождениях при участии микроорганизмов.

Ученые исследовали образцы из ролловых залежей с глубины 200 метров. Они установили, в том числе методами изотопного анализа, что 89% урана в образцах содержалось в некристаллической форме, и образование таких форм урана связано с органическим веществом или неорганическими карбонатами. Большая часть урана, обнаруженного геологами на наразрабатываемом участке месторождения, образовалась около 3 млн лет назад в результате деятельности микроорганизмов, которая приводила к осаждению урана.

По словам ученых, изобилие такого биогенного некристаллического урана может иметь последствия для экологической рекультивации горных предприятий и для практики добычи в целом. Например, вероятно, биогенный некристаллический уран будет образовывать водорастворимые формы в отличие от его кристаллического аналога уранинита. Это может повлиять на экологическую мобильность урана, в результате чего повысится вероятность загрязнения водоносного горизонта питьевой воды.

В дальнейшем ученые надеются исследовать происхождение ролловых залежей на других урановых месторождениях, чтобы оценить глобальное значение своих результатов для уточнения теории образования урана, а также для его экологической миграции и связанной с ней безопасной рекультивации горных выработок. Для этого, в том числе, важно понять, являются ли микробы, производящие уран сегодня, такими же, как те, которые образовали его в земной коре три миллиона лет назад.

Продолжая рассказ о технологиях замкнутого ядерного цикла, я хотел бы уложить в мозаику фактов о реакторах, изотопах и технологических концепциях главный кирпич, без которого очень трудно представить себе цельную картину того, что хотят получить все участники забега к светлому будущему мирного атома.

Я говорю о топливе.

Именно вокруг топлива и его переработки внутри ЗЯТЦ и крутится вся интрига будущего ядерной энергетики. От того, как и насколько эффективно будет организована переработка отработанного ядерного топлива и зависит — станет ли ЗЯТЦ технологией будущего — или же так и останется «бумажным тигром», который так и не сможет словить самую сонную мышь.

Итак, на экране — крепкие ребята!

Справа — оружейный уран, слева — оружейный плутоний. Именно так они выглядят в жизни, в виде чистых металлов , коими они и являются. И оружейный уран, и оружейный плутоний рекомендуется брать в руки только в специальных защитных перчатках, а плутоний ещё и стоит при этом хранить в герметичной упаковке — мельчайшие частицы плутония, в силу его природной летучести и высокой радиоактивной токсичности (более, чем в 1000 раз превышающую таковую для урана) могут легко оседать в бронхах и лёгких и наносить впоследствии необратимые повреждения органам дыхания.
При этом, как и многие другие тяжёлые металлы, плутоний и уран крайне плохо выводятся из человеческого организма — даже через 40 лет лишь половина этих элементов будет выведена из печени человека.
В общем, и плутоний, и уран в своём топливном, химически и изотопно чистом состоянии требуют уже весьма бережного и аккуратного обращения.

Но проблемы, которые надо решать при использовании их в ЗЯТЦ, и того сложнее...


Зачем нужен ЗЯТЦ? И что это вообще такое — замкнутый ядерный цикл? Что мы замыкаем в рамках этого цикла и что это за ядерная алхимия, которая помогает нам буквально «делать топливо из ничего»?

ЗЯТЦ, по своей сути, в его урановом варианте, это постоянный, многостадийный и многотрудный процесс превращения урана в плутоний .
И сжигание полученного плутония совместно с ураном, которое снова-таки даёт нам дополнительные количества плутония, полученные, опять-таки, из урана.
В рамках механики изотопов я уже как-то разбирал эту магию вот .

В рамках же использования и переработки топлива этот «изотопный хоровод» выглядит и того интереснее.
Во-первых, сегодняшние конструкции реакторов подразумевают периодические погрузки и выгрузки ядерного топлива. В силу того, что плутоний у нас в «дикой природе» не водится, в реактор загружается либо природный, либо обогащённый уран .
На природном уране сегодня в мире работает только один тип промышленных реакторов — канадские реакторы CANDU и их клоны ещё в нескольких странах (например, Индии):

Это, по сути дела, единственный на сегодняшний день тяжёловодный реактор — только реакторы CANDU могут сегодня работать на природном уране , не нуждаясь в каких-либо сложных процессах по разделению изотопов урана — либо на современных центрифугах, либо на уходящих в прошлое газодиффузионных заводах.
Кроме того, реакторы CANDU, в принципе, могут даже «подъедать» при небольшой доработке и доводке даже отработанное ядерное топливо (ОЯТ) за водо-водяными реакторами типа ВВЭР или PWR.

«Э? А как это — жечь заново то, что уже сгорело? » — спросит читатель. И будет безусловно прав — для случая нефти, газа или каменного угля. Эти химические топлива и в самом деле полностью сгорают в процессе получения энергии. А вот в случае ядерного топлива, как говорил товарищ Сталин: «нэ так всё было, савсэм нэ так».

Всё дело в том, что ни в одном из реакторов топливо не сгорает полностью . В какой-то момент времени содержание делящегося изотопа в активной зоне просто падает ниже неких критических уровней и самоподдерживающаяся цепная реакция просто становится невозможной — даже на полностью выдвинутых из активной зоны поглощающих стержнях, нейтроны от деления какого-нибудь ядра 235 U просто не могут найти следующие ядра для продолжения цепной реакции.
Всё дело в том, что как я уже писал в статье о механике изотопов, часть нейтронов из цепной реакции деления урана неизбежно поглощается конструкциями реактора, часть — задерживается замедлителем и теплоносителем, и ещё немалая часть нейтронов потихоньку превращает содержащийся в ТВЭЛах 238 U в тот самый 239 Pu, который и изображён у нас на верхнем рисунке.
Причём, что очень важно заметить — такой процесс постепенного превращения урана в плутоний идёт с первой секунды от того момента, когда в активной зоне ядерного реактора началась ядерная реакция.
То есть, несмотря на то, что для инициации реакции деления у человечества пока есть единственная «ядерная спичка» в виде легкоделимого изотопа 235 U, даже в современных водо-водяных реакторах типа ВВЭР или PWR горит отнюдь не только уран 235 U . В них, начиная с первой же секунды от начала цепной реакции, начинает образовываться (и гореть!) и второй «крепкий парень» — плутоний.

Какой же величиной характеризуется процент сгорания топлива? Как вы понимаете, взвешивать «сгоревший» ТВЭЛ практически бесполезно — в отличии от вагона качественного угля, который почти полностью переходит в форму углекислого газа (СО 2), оставляя нам только горстку несгораемой золы, ТВЭЛ практически не теряет своей исходной массы.
Вся его исходная масса, за исключением потерь нейтронов и небольшого выделения инертных газов, образующихся, как продукты реакции, остаётся внутри ТВЭЛа.
Поэтому для измерения процента сгорания исходного топлива атомщики придумали хитрый параметр: мегаватт в сутки на тонну топлива или, сокращённо — МВт·сутки/тонна .
Этот параметр можно мерять уже непосредственно, измеряя мгновенную мощность реактора и зная величину его полной начальной загрузки. Понятным образом, за счёт того, что топливо в реакторе постепенно выгорает и деградирует, при прочих равных «свежее» ядерное топливо выдаёт большее мгновенное значение МВт·суток на тонну, нежели отработанное.
Поэтому, для «подгонки» реактора по мощности в зависимости от «свежести» топлива используют специальные регулирующие стержни (поглотители нейтронов), которые забирают на себя часть избыточного нейтронного потока от свежего топлива.
Условно говоря, поглощающие стержни — это «дроссельная заслонка» реактора, которая, в зависимости от степени её открытия, позволяет ядерному топливу проявить весь доступный ему потенциал цепной реакции.


Внизу — активная зона реактора с ТВЭЛами, вверху — каналы для регулирующих стержней.
Модель небольшого реактора в разрезе. Масштаб 1:1.

На сегодняшний день основным ограничителем по степени выгорания ядерного топлива, однако, является отнюдь не возможность регулирования реактора управляющими стержнями. Управляющие стержни реактора отнюдь не находятся на «верхней полочке» («газ до отказа, а там — поглядим») на момент окончания кампании использования ядерного топлива в реакторе.
Основное ограничение по глубине выгорания ядерного топлива сегодня связано с накоплением продуктов деления . В результате каждого деления ядра урана вместо одного атома образуются два новых, суммарный объём которых примерно в два раза больше объёма разделившегося атома, поскольку все атомы химических элементов, в общем-то, имеют примерно одинаковые объёмы. Помимо этого, новые атомы, которые представляют из себя осколки деления, относятся к другим химическим элементам, в силу чего не могут помещаться в узлах кристаллической решётки урана.
Ну и, на закуску, как я уже упомянул — часть продуктов деления представляет собой газы (в основном — инертные криптон и ксенон, а также вездесущий гелий), которые ещё дополнительно раздувают несчастный ТВЭЛ изнутри.
Поскольку все эти процессы ведут к увеличению объёма вещества внутри ТВЭЛа, глубина выгорания ядерного топлива лимитируется сегодня исключительно давлением продуктов реакции внутри ТВЭЛа — и возможностью его конструкции противостоять этому давлению.
Сами по себе ТВЭЛы, элементарные кирпичики ядерного топлива, уже пробегали у меня в блоге. Вот они:

Это небольшие «таблетки», в которые в процессе изготовления ядерного топлива помещается обогащённый уран или же, в перспективе ЗЯТЦ, смешанное уран-плутониевое топливо. Второй вариант ещё называется МОХ (или МОКС) топливо, сокращённо от слов «смешанные оксиды» (mixed oxides).
Именно металлооксидное (правда, в большей степени не смешанное, а чисто урановое) топливо и используют сейчас большинство ядерных станций. Почему?

Всё дело в том, что чистый, металлический уран и в самом деле «крепкий парень». Интегральная глубина выгорания для металлического урана составляет всего 3000-3500 МВт·сутки/т. После этого момента продукты реакции разрывают чисто урановый ТВЭЛ, как капля никотина — бедного хомячка из известного анекдота.
Поскольку же деление 1 грамма урана сопровождается освобождением примерно 1 МВт·суток энергии, то можно легко посчитать, сколько грамм урана можно сжечь из начальной тонны, просто написав вместо мегаватт-суток тепловой энергии граммы израсходованного урана. Вот такая маленькая хитрость атомной арифметики. Желающие могут в соответствии одного грамма урана одним мегаватт-суткам энергии усмотреть музыку вселенских сфер и руку Господа нашего, я же просто скажу: классно получилось, удобно считать.
Таким образом, используя металлические урановые ТВЭЛы, можно, в идеале, за кампанию реактора сжечь около 3500 грамм (3,5 килограмма) урана из каждой тонны загруженного в реактор изначально урана.
В случае, если мы, не мудрствуя лукаво, грузим в наш реактор обычный природный уран , так обычно и поступали — ТВЭЛы формировали из простого, металлического уранового топлива и сжигали где-то половину от содержащегося в природном уране количества лёгкого, «горящего» изотопа 235 U.
В отработавшем ядерном топливе реакторов на природном уране, таким образом остается 0,2-0,3% изотопа 235 U. Повторное обогащение такого урана пока экономически нецелесообразно, поэтому он обычно остается в виде так называемого отвального (или обеднённого) урана. Однако отвальный уран из таких реакторов, вместе с хвостами газовых центрифуг и отвалами газодиффузионных заводов, в дальнейшем может быть легко использован как воспроизводящий материал в реакторах-бридерах на
быстрых нейтронах.

В силу такого низкого значения как абсолютной (в МВт·сутках), так и относительной (не более 50%) глубины выгорания ядерного топлива, работа реактора на природном уране превращается в сущий ад для эксплуатационников.
По сути дела, работа с реактором на природном уране — это постоянная, ежедневная смена отработанного ядерного топлива на свежее. Если вы посмотрели на фотографию реактора CANDU и подумали, что это запечатлён момент его редкого и нечастого обслуживания — то я должен вас разочаровать.
Реакторы на природном уране приходится грузить топливом практически постоянно. Вот так, в защитных костюмах, в респираторах и перчатках, с соблюдением всех мер предосторожности при работе со свежим и, особенно — с отработанным ядерным топливом, которое уже нахваталось нейтронов, раздулось от продуктов реакции и инертных газов и немножко светится в темноте.

Однако, для соединений урана глубина выгорания ядерного топлива может быть намного больше. Например, оксид урана является веществом очень пористым и поэтому способен накопить много больше, чем металлический уран, продуктов деления и инертных газов внутри ТВЭЛа без видимых нарушений формы тепловыделяющего элемента — до 40 000 МВт·сутки/т, а возможно, в будущем, и больше — до 100 000 МВт·сутки/т.
Нетрудно посчитать, что такие значения глубины выгорания (по правилу «мегаватт-сутки равны грамму урана») соответствуют сгоранию в тонне ТВЭЛов от 40 до 100 килограммов 235 U.
Учитывая, что сегодня современные водо-водяные реакторы работают на обогащённом уране с процентом изотопа 235 U в пределе 3,5-4,5% это приводит нас к парадоксу: современные реакторы типа ВВЭР и PWR вроде бы жгут лёгкий изотоп 235 U в количествах даже больших , нежели его им выдали в начальной загрузке ядерного топлива.

Однако, на самом деле, это не так.
Сегодня, по факту, при использовании урана с обогащением в 3,5-4,5% по изотопу 235 U, около 50% энергии , выделенной во время кампании загрузки такого реактора, происходит за счёт деления атомов изотопа плутония — наработанного прямо в ТВЭЛе 239 Pu.
Вот так, ребята.
Плутоний уже даёт нам (сегодня!) около половины всей энергии , которую мы черпаем из процесса деления тяжёлых ядер.

Учитывая же вклад плутония в работу реакторов на обогащённом уране, вы можете, исходя из достигнутой глубины выгорания ядерного топлива и посчитанного вклада плутония в это тепловыделение, посчитать и то, сколько урана реально сжигает современный водо-водяной реактор в своих «топках».
Результат, я думаю, тоже вас удивит.
Современные реакторы оставляют около половины начального содержания урана в свежем топливе , просто отправляя его в ОЯТ. ТВЭЛ и ТВС просто отказывают раньше, нежели цепная реакция успевает сжечь весь содержащийся в реакторе лёгкий уран изотопа 235 U!


Это не печенька, а мужик — к счастью, не Гордон Фримен.
Металлический плутоний без защитной плёнки.

Именно за счёт управляемого выгорания 235 U и умелого замещения выгоревшего урана свеженаработанным прямо в ТВЭЛе из 238 U плутонием и поднимают сейчас шаг за шагом длительность кампании работы реакторов на обогащённом уране. При этом, что интересно, общий уровень обогащения топлива растёт отнюдь не столь значительно, как длительность кампании работы реактора на одной загрузке.

В начале работы реакторов стандартной кампанией для ВВЭРов и PWR считалась 12-месячная, годовая кампания.
В середине 1980-х годов в США на одной из станций с реактором Westinghouse PWR 4-loop была начата реализация удлинённой кампании, с итоговым переходом к 18-месячному циклу работы ядерного топлива. После научного обоснования опытной эксплуатации, все АЭС с PWR в США начали переход на 18-месячный топливный цикл, закончив его полностью к 1997-98 годам, немногим позже этот процесс начался на всех блоках мира с водо-водяные реакторами, кроме российских.

Например, во Франции, к концу 1990-х все реакторы мощностью свыше 900 МВт перешли на 18-месячную кампанию. В конце 1990-х и начале 2000-х годов многие западные PWR начали переход на 24-месячный цикл, однако большинство таких реакторов имеют мощность 900 МВт и меньше. Таким образом, для западных PWR с близкой к ВВЭР-1000 мощностью уже почти два десятилетия характерна 18-месячная топливная кампания, с тенденцией к переходу на 24-месячную периодичность загрузки активной зоны. Реакторы же ВВЭР-1000 начали переход на 18-месячный топливный цикл лишь в 2008 году (1-й блок Балаковской АЭС) и планируется, что этот процесс будет полностью завершён в 2014 году.
Почему же российские атомщики так медлят с переходом на длительные кампании на российских водо-водяных реакторах под давлением? Ведь именно высокий КИУМ, снижение затрат на обслуживание реактора и его простои, снижение доз облучения обслуживающего персонала — и является смыслом перехода на длительные кампании по загрузке ядерным топливом.

Всё дело в разности инженерных подходов и в конструкции российского ВВЭР и западного PWR. В этих реакторах используются различные тепловыделяющие сборки (ТВС) в которые и пакуются ТВЭЛы. Это именно те самые, пресловутые «квадраты» и «шестиугольники», о которых уже так долго говорят все СМИ. Вот их наглядное сравнение:


Это — поперечный разрез активных зон двух реакторов сравнимой мощности — российского ВВЭР-1000 (1000 МВт электрической мощности) и американского Westinghouse PWR 4-loop (1100 МВт электрической мощности). Как видите, американский «собрат» ВВЭРа намного толще его в талии.
Диаметр западного PWR составляет обычно 4,83 метра и даже больше, в то время, как корпус ВВЭРа имеет диаметр всего в 4,535 м. Есть мнение, что такой диаметр корпуса ВВЭРа был задан, как и всегда «расстоянием между задницами древнеримских лошадей» (а точнее — следующими из них правилами перевозок по железным дорогам СССР), однако, в общем-то, на выбор такой компоновки реактора повлияло и ещё одно качество гексагональной, то есть шестиугольной укладки ТВСов в активную зону.
Квадратная упаковка ТВСов очень проигрывает шестиугольной в плане неравномерности расхода теплоносителя по сечению ТВС — квадрат хорошо охлаждается на углах, но очень плохо — в середине ТВС. А вот шестиугольник российского ТВСа гораздо ближе по форме к идеальному кругу, в силу чего охлаждение шестиугольного, гексагонального ТВСа идёт гораздо более равномерно. Поэтому в западных сборках изначально применялись решётки-интенсификаторы, устанавливаемые на ТВС, для перемешивания теплоносителя в пределах поперечного сечения сборки.

Однако, как и во всякой реальной жизни — у любого инженерного решения есть и своя «тёмная» сторона. Получив за счёт хорошей, компактной укладки ТВС в активную зону реактора массу преимуществ — по весу конструкции, мощности насосов, теплообмену между водой и ТВС-ом, советские конструктора получили для ВВЭРа большие значения удельной тепловой нагрузки, нежели те, которые были получены в западном PWR: западный реактор имеет удельную тепловую нагрузку в 100 кВт/литр теплоносителя, в то время, как ВВЭР — уже 110 кВт/литр.
В силу этого неприятного факта, советские, а потом и российские сборки-шестиугольники прошли очень длинный путь качественного совершенствования.

В силу такого напряжённого теплового режима работы активной зоны реактора общая аварийность сборок типа «шестиугольник» за весь период «атомной эры» была исторически в среднем выше , чем у западного «квадрата». есть большой и пространный отчёт МАГАТЭ о том что, где и когда «текло» из ТВС в реакторах различных конструкций и с разными типами тепловыделяющих сборок, все последующие данные — именно из него.

Но уже к 2006 году российские специалисты отладили шестиугольный ТВС для ВВЭРов так, что у нас на одну тысячу сборок было 9 разгерметизаций ТВСов , в среднем по миру — 10, а в США — 17 протечек «квадрата» на 1000 штук, загруженных в реактор.

И это — при том, что ещё десятилетием раннее ситуация была иной: шестиугольные ТВС из ВВЭРов давали протечки и отказы в 39 случаях из 1000, в США PWRы с топливом «квадрат» протекали в 20 случаях на каждую тысячу ТВС, а меньше всего брака было в Японии —там было всего 0,5 протечки ТВСов на каждую 1000 штук.

Вот так.
Крепкие ребята критически важны для атомной эры. Реактор должен служить теперь не менее 60 лет, тепловыделяющая сборка в ближайшее время будет обеспечивать выгорание топлива более 40 000 МВт·сутки/т, кампания реактора однозначно доберётся до 24 месяцев, а КИУМ должен уверенно перешагнуть за отметку в 90%.

Ну и половина всей энергии, получаемой сегодня из атомов рукотворного, наработанного самим человечеством плутония — скоро неизбежно превратится в три четверти, а возможно — и перешагнёт отметку в 90%, вслед за КИУМом атомных станций.

И вот тут мы, наконец, подходим к ЗЯТЦ. Который начался давным-давно и совершенно неприметной сегодня Бельгии...

Атомная бомба Губарев Владимир Степанович

Где брать уран?

Где брать уран?

Урана нужно было сотни тонн.

В СССР было всего несколько килограммов…

Месторождения урана изучены были плохо, они находились в труднодоступных районах Средней Азии, да и числились настолько бедными, что начинать там добычу геологи считали безумием.

Впрочем, вскоре они вынуждены были изменить свою точку зрения.

В разрушенной войной Европе специальные команды - американские и наши - искали уран, с которым работали немцы. Кое-что досталось нам, но большую часть янки увезли к себе; в том числе и тот уран, что находился в нашей зоне оккупации. Американцы просто захватили «желтый порошок», погрузили на автомашины и исчезли. Наша группа физиков опоздала всего на пару дней, им доложили, что американской армии очень нужны были красители, ну а как отказать в такой мелочи союзникам?!

В августе 1945 года И.В. Сталин потребовал подробной информации о состоянии дел и о результатах исследований по атомной проблеме. И.В. Курчатов и И.К. Кикоин подготовили «Справку».

Сталин просил произвести расчеты необходимых материалов и средств для изготовления 100 атомных бомб. Профессора Курчатов и Кикоин сообщили в своей «Справке», что для этого необходимо приблизительно 230 тонн металлического урана.

А сколько же было урана в СССР?

Курчатов и Кикоин приводят точные данные:

«В 1944 году в СССР предприятиями Наркомцвет-мета было добыто 1519 тонн урановой руды и получено всего 2 тонны солей урана.

В 1945 году эти предприятия переданы в НКВД СССР и на них намечено добыть 5000 тонн руды и 7 тонн урана в химических соединениях. В 1946 году мощность предприятий будет доведена до 125 тысяч тонн руды и до 50 тонн урана… Технология получения металлического урана и урановых соединений разработана, за исключением особо чистого урана, необходимого для котла «уран-графит».

Такое впечатление, будто в стране очень мало урановых месторождений. А те, что есть, обладают малыми запасами руд, да и концентрация урана в них ничтожна.

Раздел «ресурсы урана в СССР и за границей» написан Курчатовым и Кикоин сухо, но тем не менее тревога за короткими фразами чувствуется.

О запасах урана сказано так:

«До 1944 года разведки на уран фактически не велись.

В настоящее время разведанные запасы урана в СССР по всем категориям (кроме предполагаемых) составляют 300 тонн и заключаются в двух месторождениях: Табошарском (Таджикская ССР) - 262 тонны и Майли-Суйском (Киргизская ССР) - 32 тонны

Серьезным недостатком наших урановых месторождений является низкое содержание урана в руде (0,08 - 0,2 %), что ограничивает извлечение урана из руды.

Ввиду этого из 300 тонн разведанных запасов пока представляется возможным получить всего 100–120 тонн урана».

60 геологических партий в 1945 году вели поиск новых урановых месторождений. Они работали в Прибалтике и в Средней Азии, на Кавказе и на Северном Урале. Однако победных реляций пока не было… Вот почему «иностранный» раздел «Справки» Курчатова и Кикоина привлек особое внимание Сталина.

Там было сказано:

«В июле с.г. НКВД выявлено и вывезено из Германии 3,5 тонны металлического урана и 300 тонн его соединений, из которых можем получить 150–200 тонн металлического урана.

Этот уран немцами был вывезен из Бельгии.

Розыски уранового сырья в Германии продолжаются».

К сожалению, урана больше обнаружить в Германии не удалось.

В «Записке» упоминаются месторождения в Болгарии и Чехословакии. Одному из них суждено сыграть важную роль в «Атомном проекте СССР»:

«Чехословакия имеет известное урановое месторождение в Иоахимстали.

Ранее здесь добывались серебро и кобальт, а затем радий.

Запасы урана, по литературным данным, составляют около 1000 тонн со средним содержанием 0,85 %.

Для ознакомления с месторождением и выяснения целесообразности участия СССР в его разработке НКВД СССР командирует группу наших специалистов».

Буквально спустя несколько дней, 30 августа, Л.П. Берия по «ВЧ» получает информацию из Дрездена от П.Я. Мешика и С.П. Александрова. Фамилия одного из ближайших помощников Берия - Мешика - еще много раз будет встречаться в истории «Атомного проекта». Его назовут «псом НКВД», и он сам будет именовать себя так. Позже он исчезнет вместе со своим шефом…

С.П. Александров - горный инженер, профессор, кандидат наук. В 1937 году был «призван» в систему НКВД, где и служил. Это был опытный и знающий специалист, а потому Мешик и взял его с собой.

Итак, Мешик и Александров докладывали:

«Москва, НКВД СССР - товарищу Берия Л.П.

Докладная записка.

По Вашему заданию нам удалось обследовать Иохимстальское (Яхимовское) месторождение руд А-9 в Чехословакии…»

Напоминаю: «А-9» - это уран.

«Нам лично и группе наших сотрудников-специалистов удалось ознакомиться с геологическими картами, маркшейдерскими планами, статистическими и экономическими данными, посетить главнейшие горные выработки, осмотреть сооружения на поверхности, наблюдать работу обогатительной фабрики, связаться с рядом специалистов как рудника, так и курорта…»

Представителям «Атомного проекта» пришлось действовать и осторожно, и одновременно весьма решительно. Им было ясно, что фашисты проявляли особое внимание этому месторождению, а, следовательно, это еще одно свидетельство того, что в Германии все-таки была сделана попытка создать ядерное оружие.

«2. За время оккупации Чехословакии Иохимстальское (Яхимовское) предприятие было модернизировано Германией. С1939 по 1945 гг. было вложено в это предприятие не менее 2 млн. рейсмарок, главным образом в шахтное и обогатительное машинное оборудование.

3. В результате модернизации все предприятие в настоящий момент находится в блестящем техническом состоянии.

4. Действительная мощность предприятия в 2–3 раза превосходит фактическую, ежегодная мощность легко может быть доведена до 6–9 г радия в год и, соответственно, до 20–30 т А-9…»

Мешик и Александров понимают, что необходимы какие-то новые формы взаимоотношений между СССР и Чехословакией, так как дело не только в руднике, в радии, но и в целебных водах, что давно уже хорошо известны во всей Европе.

«8. В выработках Яхимовского рудника бьют два источника сильнорадиоактивных вод - имени Кюри и имени Беккереля. Воды этих источников являются, после радиевых руд, вторым полезным ископаемым предприятия, откачиваясь на поверхность, и служат целебной основой для высокоблагоустроенного курорта, имеющего общеевропейское значение

В результате проделанной работы нами и нашими специалистами собраны ценные статистические, геологические и другие данные, а также добыты образцы руд и концентратов. Выполнив, таким образом, первую часть Вашего задания, а именно установив современное состояние и перспективность Иохимстальского (Яхимовского) месторождения руд А-9, мы приступаем к выполнению второй части задания, а именно - к переговорам в Праге через посла СССР тов. Зорина о взятии Иохимстальского (Яхимовского) радиевого предприятия в концессию Союзом ССР или о других формах овладения яхимовским сырьем…»

Проходит совсем немного времени, и работы в Чехословакии резко расширяются. 15 марта 1946 года уже сам Сталин подписывает постановление по увеличению добычи А-9 на Яхимовском руднике. Туда перебрасывается новая техника, отправляются горные специалисты, расширяются геологоразведочные работы. Для Постоянной Чехословацко-Советской комиссии (такая форма сотрудничества была создана) выделяются «продовольственные карточки повышенной нормы - на 700 чел.» и «продовольственные карточки особого списка - на 200 чел.»

Голод свирепствовал на Украине, тяжелейшая ситуация складывалась в странах восточной Европы, а потому Сталин лично должен подписывать документ о том, сколько выдавать рабочим, ИТР и служащим Яхимовского предприятия продовольствия. В частности, с апреля 1946 года ежемесячно:

«…б) дополнительного питания спецпитания по списку № 01–50 вторых горячих блюд со 100 г хлеба - 500 литер «А» с абонементом - 5 литер «Б» с сухим пайком - 25…»

В документах «Атомного проекта» теперь уран из Чехословакии упоминается часто - ведь он использовался и в первом атомном реакторе Европы, пущенным И.В. Курчатовым на окраине Москвы, и в первом промышленном реакторе, где нарабатывался плутоний для первой атомной бомбы, и в первой в мире атомной станции.

Из книги СССР. 100 вопросов и ответов автора Прошутинский В

«Зачем было брать на себя проведение Олимпиады, если, как оказалось, вы без помощи Запада не можете справиться с подготовкой к ней?» - Утверждение это необоснованно. Обратимся к фактам.Организаторы Олимпиады с самого начала ориентировались в первую очередь на

Из книги Атомный проект: Тайна «сороковки» автора Новоселов В. Н.

Глава 7 УРАН ВОЗИЛИ… НА ИШАКАХ В то время, как на окраине Москвы рос первый научный центр по исследованию урановой проблемы, за тысячи километров от столицы шли поиски урановой руды. Для работы первого экспериментального атомного реактора было необходимо не менее ста

Из книги Арктические тени Третьего рейха автора Ковалев Сергей Алексеевич

Глава 12 УРАН С ГРАФИТОМ ЗАГОВОРИЛИ ПО-РУССКИ! Реорганизация управления Программой № 1 принесла положительные результаты. Получила ускорение работа по созданию первого экспериментального реактора.В Лабораторию № 2 начинают регулярно поступать партии графита и урана

Из книги Подряд на Муссолини автора Фельдман Алекс

Крейсер «Индианаполис» и пропавший уран Третьего рейха Включить в эту книгу главу об одном из самых провальных (по открытым в СССР данным. - Авт.) научных исследований Третьего рейха позволило более внимательное рассмотрение… тайны гибели в последние месяцы Второй

Из книги Тайные страницы Великой Отечественной автора Бондаренко Александр Юльевич

Часть одиннадцатая. Живым не брать. Об аресте Муссолини узнали и союзники. Спецслужбы США и Великобритании во что бы то ни стало, старались опередить друг друга в погоне за дуче, при этом не стеснялись дезинформировать друг друга, забыв о том, что они были товарищами

Из книги Серый волк. Бегство Адольфа Гитлера автора Данстен Саймон

Заседание третье:«Парад планет» - «Уран», «Марс» и «Малый Сатурн» 16 ноября 2002 года, в канун 60-летия перехода Советских войск в контрнаступление под Сталинградом, было проведено заседание очередного «круглого стола», посвященное грандиозной битве на Волге, положившей

Из книги Атомная бомба автора Губарев Владимир Степанович

Глава 9 Деньги, ракеты и уран После одновременного разгрома группы армий «Центр» в Белоруссии и группы Армий «Б» в Нормандии Мартин Борман убедился в необходимости ускорить разработку операций «Полет орла» и «Огненная Земля». Для этого он организовал экстренную встречу

Из книги автора

где же купить уран? Еще летом 1943 года И.В. Курчатов в своей Докладной записке о работе Лаборатории № 2 писал в. М. Молотову:«Для создания котла из металлического урана и смеси урана с графитом необходимо накопить в ближайшие годы 100 тонн урана. Разведанные запасы этого

Из книги автора

кто БУДЕТ ИСКАТЬ УРАН? К зиме 1944 года стало ясно, что положение с ураном просто катастрофическое. Берия, ознакомившись с деталями всего «Атомного проекта», быстро определил, что все усилия по созданию нового оружия окажутся напрасными, если не будет создана надежная

Из книги автора

«Приравнять уран к золоту…» На этот раз Л.П. Берия просит Председателя Совета Министров СССР И.В. Сталина изменить порядок учета, хранения, транспортировки и распределения урана. В своем письме он уточняет:«Постановлением Совнаркома СССР от 23 сентября 1944 г. № 1279-378 сс был