Что такое математическое ожидание случайной величины. Формула математического ожидания. Математическое ожидание и его свойства

  • Дата: 09.04.2023

Глава 6.

Числовые характеристики случайных величин

Математическое ожидание и его свойства

Для решения многих практических задач не всегда требуется знание всех возможных значений случайной величины и их вероятностей. Более того, иногда закон распределения исследуемой случайной величины просто неизвестен. Однако требуется выделить какие-то особенности этой случайной величины, иначе говоря, числовые характеристики.

Числовые характеристики – это некоторые числа, характеризующие те или иные свойства, отличительные признаки случайной величины.

Например, среднее значение случайной величины, средний разброс всех значений случайной величины вокруг своего среднего и т.д. Главное назначение числовых характеристик состоит в том, чтобы в сжатой форме выразить наиболее важные особенности распределения исследуемой случайной величины. Числовые характеристики в теории вероятностей играют огромную роль. Они помогают решать, даже без знания законов распределения, очень многие важные практические задачи.

Среди всех числовых характеристик, в первую очередь выделим характеристики положения. Это характеристики, которые фиксируют положение случайной величины на числовой оси, т.е. некое среднее значение, около которого группируются остальные значения случайной величины.

Из характеристик положения наибольшую роль в теории вероятностей играет математическое ожидание.

Математическое ожидание иногда называют просто средним значением случайной величины. Оно является неким центром распределения.

Математическое ожидание дискретной случайной величины

Рассмотрим понятие математического ожидания вначале для дискретной случайной величины.

Прежде чем вводить формальное определение, решим следующую простую задачу.

Пример 6.1. Пусть некий стрелок производит 100 выстрелов по мишени. В результате получена следующая картина: 50 выстрелов – попадание в "восьмерку", 20 выстрелов – попадание в "девятку" и 30 – в "десятку". Какова средняя сумма очков при одном выстреле.

Решение данной задачи очевидно и сводится к нахождению среднего значения 100 чисел, а именно, очков.

Преобразуем дробь, почленно поделив числитель на знаменатель, и представим среднее значение в виде следующей формулы:

Предположим теперь, что число очков при одном выстреле – это значения некоторой дискретной случайной величины Х . Из условия задачи ясно, что х 1 =8; х 2 =9; х 3 =10. Известны относительные частоты появления этих значений, которые, как известно, при большом числе испытаний приближенно равны вероятностям соответствующих значений, т.е. р 1 ≈0,5; р 2 ≈0,2; р 3 ≈0,3. Итак, . Величина в правой части – это математическое ожидание дискретной случайной величины.

Математическим ожиданием дискретной случайной величины Х называется сумма произведений всех ее возможных значений на вероятности этих значений.

Пусть дискретная случайная величина Х задана своим рядом распределения:

Х х 1 х 2 х n
Р р 1 р 2 р n

Тогда математическое ожидание М (Х ) дискретной случайной величины определяется по следующей формуле:

Если дискретная случайная величина принимает бесконечное счетное множество значений, то математическое ожидание выражается формулой:

,

причем математическое ожидание существует, если ряд в правой части равенства абсолютно сходится.

Пример 6.2 . Найти математическое ожидание выигрыша Х в условиях примера 5.1.

Решение . Напомним, что ряд распределения Х имеет следующий вид:

Х
Р 0,7 0,2 0,1

Получим М (Х )=0∙0,7+10∙0,2+50∙0,1=7. Очевидно, что 7 рублей – это справедливая цена билета в данной лотерее, без различных затрат, например, связанных с распространением или изготовлением билетов. ■

Пример 6.3 . Пусть случайная величина Х – это число появлений некоторого события А в одном испытании. Вероятность этого события равна р . Найти М (Х ).

Решение. Очевидно, что возможные значения случайной величины: х 1 =0 – событие А не появилось и х 2 =1 – событие А появилось. Ряд распределения имеет вид:

Х
Р 1−р р

Тогда М (Х ) = 0∙(1−р )+1∙р = р . ■

Итак, математическое ожидание числа появлений события в одном испытании равно вероятности этого события.

В начале параграфа была приведена конкретная задача, где указывалась связь между математическим ожиданием и средним значением случайной величины. Поясним это в общем виде.

Пусть произведено k испытаний, в которых случайная величина Х приняла k 1 раз значение х 1 ; k 2 раз значение х 2 и т.д. и, наконец, k n раз значение x n . Очевидно, что k 1 + k 2 +…+ k n = k . Найдем среднее арифметическое всех этих значений, имеем

Заметим, что дробь - это относительная частота появления значения х i в k испытаниях. При большом числе испытаний относительная частота приближенно равна вероятности, т.е. . Отсюда следует, что

.

Таким образом, математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины, причем тем точнее, чем больше число испытаний – в этом состоит вероятностный смысл математического ожидания.

Математическое ожидание иногда называют центром распределения случайной величины, так как, очевидно, что возможные значения случайной величины расположены на числовой оси слева и справа от ее математического ожидания.

Перейдем теперь к понятию математического ожидания для непрерывной случайной величины.

Случайной величиной называют переменную величину, которая в результате каждого испытания принимает одно заранее неизвестное значение, зависящее от случайных причин. Случайные величины обозначают заглавными латинскими буквами: $X,\ Y,\ Z,\ \dots $ По своему типу случайные величины могут быть дискретными и непрерывными .

Дискретная случайная величина - это такая случайная величина, значения которой могут быть не более чем счетными, то есть либо конечными, либо счетными. Под счетностью имеется ввиду, что значения случайной величины можно занумеровать.

Пример 1 . Приведем примеры дискретных случайных величин:

а) число попаданий в мишень при $n$ выстрелах, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

б) число выпавших гербов при подкидывании монеты, здесь возможные значения $0,\ 1,\ \dots ,\ n$.

в) число прибывших кораблей на борт (счетное множество значений).

г) число вызовов, поступающих на АТС (счетное множество значений).

1. Закон распределения вероятностей дискретной случайной величины.

Дискретная случайная величина $X$ может принимать значения $x_1,\dots ,\ x_n$ с вероятностями $p\left(x_1\right),\ \dots ,\ p\left(x_n\right)$. Соответствие между этими значениями и их вероятностями называется законом распределения дискретной случайной величины . Как правило, это соответствие задается с помощью таблицы, в первой строке которой указывают значения $x_1,\dots ,\ x_n$, а во второй строке соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$.

$\begin{array}{|c|c|}
\hline
X_i & x_1 & x_2 & \dots & x_n \\
\hline
p_i & p_1 & p_2 & \dots & p_n \\
\hline
\end{array}$

Пример 2 . Пусть случайная величина $X$ - число выпавших очков при подбрасывании игрального кубика. Такая случайная величина $X$ может принимать следующие значения $1,\ 2,\ 3,\ 4,\ 5,\ 6$. Вероятности всех этих значений равны $1/6$. Тогда закон распределения вероятностей случайной величины $X$:

$\begin{array}{|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\hline

\hline
\end{array}$

Замечание . Поскольку в законе распределения дискретной случайной величины $X$ события $1,\ 2,\ \dots ,\ 6$ образуют полную группу событий, то в сумме вероятности должны быть равны единице, то есть $\sum{p_i}=1$.

2. Математическое ожидание дискретной случайной величины.

Математическое ожидание случайной величины задает ее «центральное» значение. Для дискретной случайной величины математическое ожидание вычисляется как сумма произведений значений $x_1,\dots ,\ x_n$ на соответствующие этим значениям вероятности $p_1,\dots ,\ p_n$, то есть: $M\left(X\right)=\sum^n_{i=1}{p_ix_i}$. В англоязычной литературе используют другое обозначение $E\left(X\right)$.

Свойства математического ожидания $M\left(X\right)$:

  1. $M\left(X\right)$ заключено между наименьшим и наибольшим значениями случайной величины $X$.
  2. Математическое ожидание от константы равно самой константе, т.е. $M\left(C\right)=C$.
  3. Постоянный множитель можно выносить за знак математического ожидания: $M\left(CX\right)=CM\left(X\right)$.
  4. Математическое ожидание суммы случайных величин равно сумме их математических ожиданий: $M\left(X+Y\right)=M\left(X\right)+M\left(Y\right)$.
  5. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий: $M\left(XY\right)=M\left(X\right)M\left(Y\right)$.

Пример 3 . Найдем математическое ожидание случайной величины $X$ из примера $2$.

$$M\left(X\right)=\sum^n_{i=1}{p_ix_i}=1\cdot {{1}\over {6}}+2\cdot {{1}\over {6}}+3\cdot {{1}\over {6}}+4\cdot {{1}\over {6}}+5\cdot {{1}\over {6}}+6\cdot {{1}\over {6}}=3,5.$$

Можем заметить, что $M\left(X\right)$ заключено между наименьшим ($1$) и наибольшим ($6$) значениями случайной величины $X$.

Пример 4 . Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=2$. Найти математическое ожидание случайной величины $3X+5$.

Используя вышеуказанные свойства, получаем $M\left(3X+5\right)=M\left(3X\right)+M\left(5\right)=3M\left(X\right)+5=3\cdot 2+5=11$.

Пример 5 . Известно, что математическое ожидание случайной величины $X$ равно $M\left(X\right)=4$. Найти математическое ожидание случайной величины $2X-9$.

Используя вышеуказанные свойства, получаем $M\left(2X-9\right)=M\left(2X\right)-M\left(9\right)=2M\left(X\right)-9=2\cdot 4-9=-1$.

3. Дисперсия дискретной случайной величины.

Возможные значения случайных величин с равными математическими ожиданиями могут по-разному рассеиваться вокруг своих средних значений. Например, в двух студенческих группах средний балл за экзамен по теории вероятностей оказался равным 4, но в одной группе все оказались хорошистами, а в другой группе - только троечники и отличники. Поэтому возникает необходимость в такой числовой характеристике случайной величины, которая бы показывала разброс значений случайной величины вокруг своего математического ожидания. Такой характеристикой является дисперсия.

Дисперсия дискретной случайной величины $X$ равна:

$$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2}.\ $$

В англоязычной литературе используются обозначения $V\left(X\right),\ Var\left(X\right)$. Очень часто дисперсию $D\left(X\right)$ вычисляют по формуле $D\left(X\right)=\sum^n_{i=1}{p_ix^2_i}-{\left(M\left(X\right)\right)}^2$.

Свойства дисперсии $D\left(X\right)$:

  1. Дисперсия всегда больше или равна нулю, т.е. $D\left(X\right)\ge 0$.
  2. Дисперсия от константы равна нулю, т.е. $D\left(C\right)=0$.
  3. Постоянный множитель можно выносить за знак дисперсии при условии возведения его в квадрат, т.е. $D\left(CX\right)=C^2D\left(X\right)$.
  4. Дисперсия суммы независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X+Y\right)=D\left(X\right)+D\left(Y\right)$.
  5. Дисперсия разности независимых случайных величин равна сумме их дисперсий, т.е. $D\left(X-Y\right)=D\left(X\right)+D\left(Y\right)$.

Пример 6 . Вычислим дисперсию случайной величины $X$ из примера $2$.

$$D\left(X\right)=\sum^n_{i=1}{p_i{\left(x_i-M\left(X\right)\right)}^2}={{1}\over {6}}\cdot {\left(1-3,5\right)}^2+{{1}\over {6}}\cdot {\left(2-3,5\right)}^2+\dots +{{1}\over {6}}\cdot {\left(6-3,5\right)}^2={{35}\over {12}}\approx 2,92.$$

Пример 7 . Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=2$. Найти дисперсию случайной величины $4X+1$.

Используя вышеуказанные свойства, находим $D\left(4X+1\right)=D\left(4X\right)+D\left(1\right)=4^2D\left(X\right)+0=16D\left(X\right)=16\cdot 2=32$.

Пример 8 . Известно, что дисперсия случайной величины $X$ равна $D\left(X\right)=3$. Найти дисперсию случайной величины $3-2X$.

Используя вышеуказанные свойства, находим $D\left(3-2X\right)=D\left(3\right)+D\left(2X\right)=0+2^2D\left(X\right)=4D\left(X\right)=4\cdot 3=12$.

4. Функция распределения дискретной случайной величины.

Способ представления дискретной случайной величины в виде ряда распределения не является единственным, а главное он не является универсальным, поскольку непрерывную случайную величину нельзя задать с помощью ряда распределения. Существует еще один способ представления случайной величины - функция распределения.

Функцией распределения случайной величины $X$ называется функция $F\left(x\right)$, которая определяет вероятность того, что случайная величина $X$ примет значение, меньшее некоторого фиксированного значения $x$, то есть $F\left(x\right)=P\left(X < x\right)$

Свойства функции распределения :

  1. $0\le F\left(x\right)\le 1$.
  2. Вероятность того, что случайная величина $X$ примет значения из интервала $\left(\alpha ;\ \beta \right)$, равна разности значений функции распределения на концах этого интервала: $P\left(\alpha < X < \beta \right)=F\left(\beta \right)-F\left(\alpha \right)$
  3. $F\left(x\right)$ - неубывающая.
  4. ${\mathop{lim}_{x\to -\infty } F\left(x\right)=0\ },\ {\mathop{lim}_{x\to +\infty } F\left(x\right)=1\ }$.

Пример 9 . Найдем функцию распределения $F\left(x\right)$ для закона распределения дискретной случайной величины $X$ из примера $2$.

$\begin{array}{|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 \\
\hline
1/6 & 1/6 & 1/6 & 1/6 & 1/6 & 1/6 \\
\hline
\end{array}$

Если $x\le 1$, то, очевидно, $F\left(x\right)=0$ (в том числе и при $x=1$ $F\left(1\right)=P\left(X < 1\right)=0$).

Если $1 < x\le 2$, то $F\left(x\right)=P\left(X=1\right)=1/6$.

Если $2 < x\le 3$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)=1/6+1/6=1/3$.

Если $3 < x\le 4$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)=1/6+1/6+1/6=1/2$.

Если $4 < x\le 5$, то $F\left(X\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)=1/6+1/6+1/6+1/6=2/3$.

Если $5 < x\le 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)=1/6+1/6+1/6+1/6+1/6=5/6$.

Если $x > 6$, то $F\left(x\right)=P\left(X=1\right)+P\left(X=2\right)+P\left(X=3\right)+P\left(X=4\right)+P\left(X=5\right)+P\left(X=6\right)=1/6+1/6+1/6+1/6+1/6+1/6=1$.

Итак, $F(x)=\left\{\begin{matrix}
0,\ при\ x\le 1,\\
1/6,при\ 1 < x\le 2,\\
1/3,\ при\ 2 < x\le 3,\\
1/2,при\ 3 < x\le 4,\\
2/3,\ при\ 4 < x\le 5,\\
5/6,\ при\ 4 < x\le 5,\\
1,\ при\ x > 6.
\end{matrix}\right.$

Характеристики ДСВ и их свойства. Математическое ожидание, дисперсия, СКО

Закон распределения полностью характеризует случайную величину. Однако, когда невозможно найти закон распределения, или этого не требуется, можно ограничиться нахождением значений, называемых числовыми характеристиками случайной величины. Эти величины определяют некоторое среднее значение, вокруг которого группируются значения случайной величины, и степень их разбросанности вокруг этого среднего значения.

Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных значений случайной величины на их вероятности.

Математическое ожидание существует, если ряд, стоящий в правой части равенства, сходится абсолютно.

С точки зрения вероятности можно сказать, что математическое ожидание приближенно равно среднему арифметическому наблюдаемых значений случайной величины.

Пример. Известен закон распределения дискретной случайной величины. Найти математическое ожидание.

X
p 0.2 0.3 0.1 0.4

Решение:

9.2 Свойства математического ожидания

1. Математическое ожидание постоянной величины равно самой постоянной.

2. Постоянный множитель можно выносить за знак математического ожидания.

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий.

Это свойство справедливо для произвольного числа случайных величин.

4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых.

Это свойство также справедливо для произвольного числа случайных величин.

Пусть производится n независимых испытаний, вероятность появления события А в которых равна р.

Теорема. Математическое ожидание М(Х) числа появления события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании.

Пример. Найти математическое ожидание случайной величины Z, если известны математические ожидания X и Y: M(Х)=3, M(Y)=2, Z=2X+3Y.

Решение:

9.3 Дисперсия дискретной случайной величины

Однако, математическое ожидание не может полностью характеризовать случайный процесс. Кроме математического ожидания надо ввести величину, которая характеризует отклонение значений случайной величины от математического ожидания.

Это отклонение равно разности между случайной величиной и ее математическим ожиданием. При этом математическое ожидание отклонения равно нулю. Это объясняется тем, что одни возможные отклонения положительны, другие отрицательны, и в результате их взаимного погашения получается ноль.



Дисперсией (рассеиванием) дискретной случайной величины называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания.

На практике подобный способ вычисления дисперсии неудобен, т.к. приводит при большом количестве значений случайной величины к громоздким вычислениям.

Поэтому применяется другой способ.

Теорема. Дисперсия равна разности между математическим ожиданием квадрата случайной величины Х и квадратом ее математического ожидания .

Доказательство. С учетом того, что математическое ожидание М(Х) и квадрат математического ожидания М 2 (Х) – величины постоянные, можно записать:

Пример. Найти дисперсию дискретной случайной величины заданной законом распределения.

Х
Х 2
р 0.2 0.3 0.1 0.4

Решение: .

9.4 Свойства дисперсии

1. Дисперсия постоянной величины равна нулю. .

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат. .

3. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин. .

4. Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин. .

Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в каждом испытании.

9.5 Среднее квадратическое отклонение дискретной случайной величины

Средним квадратическим отклонением случайной величины Х называется квадратный корень из дисперсии.

Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин.

Наиболее полной характеристикой случайной величины является ее закон распределения. Однако он не всегда известен и в этих случаях приходится довольствоваться меньшими сведениями. К таким сведениям могут относиться: диапазон изменения случайной величины, наибольшее (наименьшее) ее значение, некоторые другие характеристики, которые описывают случайную величину некоторым суммарным способом. Все эти величины называют числовыми характеристиками случайной величины. Обычно это некоторые неслучайные числа, так или иначе характеризующие случайную величину. Основное назначение числовых характеристик – в сжатой форме выразить наиболее существенные особенности того или иного распределения.

Простейшей числовой характеристикой случайной величины Х называется ее математическое ожидание :

М(Х)=х 1 р 1 +х 2 р 2 +…+x n p n . (1.3.1)

Здесь х 1 , х 2 , …, х n – возможные значения случайной величины Х , а р 1 , р 2 , …, р n – их вероятности.

Пример 1. Найти математическое ожидание случайной величины, если известен ее закон распределения:

Решение . М(Х)=2×0,3+3×0,1+5×0,6=3,9 .

Пример 2 . Найти математическое ожидание числа появлений события А в одном испытании, если вероятность этого события равна р .

Решение . Если Х – число появлений события А в одном испытании, то, очевидно, закон распределения Х имеет вид:

Тогда М(Х)=0×(1–р)+1×р=р .

Итак: математическое ожидание числа появлений события в одном испытании равно его вероятности.

Вероятностный смысл математического ожидания

Пусть произведено n испытаний, в которых случайная величина Х приняла m 1 раз значение х 1 , m 2 раз значение х 2 , …, m k раз значение х k . Тогда сумма всех значений в n испытаниях равна:

х 1 m 1 +x 2 m 2 +…+x k m k .

Найдем среднее арифметическое всех значений, принятых случайной величиной:

Значения – относительные частоты появления значений х i (i=1, …, k) . Если n достаточно велико (n®¥) , то эти частоты приблизительно равны вероятностям: . Но тогда

=x 1 p 1 +x 2 p 2 +…+x k p k =M(X).

Таким образом, математическое ожидание приближенно равно (тем точнее, чем больше число испытаний) среднему арифметическому наблюдаемых значений случайной величины. В этом состоит вероятностный смысл математического ожидания.

Свойства математического ожидания

1. Математическое ожидание постоянной равно самой постоянной.

М(С)=С×1=С .

2. Постоянный множитель можно выносить за знак математического ожидания

М(СХ)=С×М(Х) .

Доказательство . Пусть закон распределения Х задан таблицей:

Тогда случайная величина СХ принимает значения Сх 1 , Сх 2 , …, Сх n с теми же вероятностями , т.е. закон распределения СХ имеет вид:

М(СХ)=Сх 1 ×р 1 +Сх 2 ×р 2 +…+Сх n ×p n =

=С(х 1 р 1 +х 2 р 2 +…+х n p n)=СМ(Х).

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

М(XY)=M(X)×M(Y) .

Это утверждение дается без доказательства (доказательство основано на определении математического ожидания).

Следствие . Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.

В частности, для трех независимых случайных величин

М(XYZ)=M(X)×M(Y)×M(Z) .

Пример . Найти математическое ожидание произведения числа очков, которые могут выпасть при бросании двух игральных костей.

Решение . Пусть Х i – число очков на i -й кости. Это могут быть числа 1 , 2 , …, 6 с вероятностями . Тогда

М(Х i)=1× +2× +…+6× = (1+2+…+6)= × ×6= .

Пусть Х=Х 1 ×Х 2 . Тогда

М(Х)=М(Х 1)×М(Х 2)= =12,25 .

4. Математическое ожидание суммы двух случайных величин (независимых или зависимых) равно сумме математических ожиданий слагаемых:

М(Х+Y)=M(X)+M(Y) .

Это свойство обобщается на случай произвольного количества слагаемых.

Пример . Производится 3 выстрела с вероятностями попадания в цель, равными р 1 =0,4 , р 2 =0,3 и р 3 =0,6 . Найти математическое ожидание общего числа попаданий.

Решение . Пусть Х i – число попаданий при i -м выстреле. Тогда

М(Х i)=1×p i +0×(1–p i)=p i .

Таким образом,

M(X 1 +X 2 +X 3)= =0,4+0,3+0,6=1,3 .

Каждая, отдельно взятая величина полностью определяется своей функцией распределения. Также, для решения практических задач хватает знать несколько числовых характеристик, благодаря которым появляется возможность представить основные особенности случайной величины в краткой форме.

К таким величинам относят в первую очередь математическое ожидание и дисперсия .

Математическое ожидание — среднее значение случайной величины в теории вероятностей. Обозначается как .

Самым простым способом математическое ожидание случайной величины Х(w) , находят как интеграл Лебега по отношению к вероятностной мере Р исходном вероятностном пространстве

Еще найти математическое ожидание величины можно как интеграл Лебега от х по распределению вероятностей Р Х величины X :

где - множество всех возможных значений X .

Математическое ожидание функций от случайной величины X находится через распределение Р Х . Например , если X - случайная величина со значениями в и f(x) - однозначная борелевская функция Х , то:

Если F(x) - функция распределения X , то математическое ожидание представимо интегралом Лебега - Стилтьеса (или Римана - Стилтьеса):

при этом интегрируемость X в смысле (* ) соответствует конечности интеграла

В конкретных случаях, если X имеет дискретное распределение с вероятными значениями х k , k=1, 2 , . , и вероятностями , то

если X имеет абсолютно непрерывное распределение с плотностью вероятности р(х) , то

при этом существование математического ожидания равносильно абсолютной сходимости соответствующего ряда или интеграла.

Свойства математического ожидания случайной величины.

  • Математическое ожидание постоянной величины равно этой величине:

C - постоянная;

  • M=C.M[X]
  • Математическое ожидание суммы случайно взятых величин равно сумме их математических ожиданий:

  • Математическое ожидание произведения независимых случайно взятых величин = произведению их математических ожиданий:

M=M[X]+M[Y]

если X и Y независимы.

если сходится ряд:

Алгоритм вычисления математического ожидания.

Свойства дискретных случайных величин: все их значения можно перенумеровать натуральными числами; каждому значению приравнять отличную от нуля вероятность.

1. По очереди перемножаем пары: x i на p i .

2. Складываем произведение каждой пары x i p i .

Напрмер , для n = 4 :

Функция распределения дискретной случайной величины ступенчатая, она возрастает скачком в тех точках, вероятности которых имеют положительный знак.

Пример: Найти математическое ожидание по формуле.