Нормальное распределение. Непрерывные распределения в EXCEL. Нормальное распределение случайной величины График стандартного нормального распределения

  • Дата: 09.04.2023

Нормальный закон распределения (часто называемый законом Гаусса) играет исключительно важную роль в теории вероятностей и занимает среди других законов распределения особое положение. Это – наиболее часто встречающийся на практике закон распределения. Главная особенность, выделяющая нормальный закон среди других законов, состоит в том, что он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях.

Можно доказать, что сумма достаточно большого числа независимых (или слабо зависимых) случайных величин, подчиненных каким угодно законам распределения (при соблюдении некоторых весьма нежестких ограничений), приближенно подчиняется нормальному закону, и это выполняется тем точнее, чем большее количество случайных величин суммируется. Большинство встречающихся на практике случайных величин, таких, например, как ошибки измерений, ошибки стрельбы и т.д., могут быть представлены как суммы весьма большого числа сравнительно малых слагаемых – элементарных ошибок, каждая из которых вызвана действием отдельной причины, не зависящей от остальных. Каким бы законам распределения ни были подчинены отдельные элементарные ошибки, особенности этих распределений в сумме большого числа слагаемых нивелируются, и сумма оказывается подчиненной закону, близкому к нормальному. Основное ограничение, налагаемое на суммируемые ошибки, состоит в том, чтобы они все равномерно играли в общей сумме относительно малую роль. Если это условие не выполняется и, например, одна из случайных ошибок окажется по своему влиянию на сумму резко превалирующей над всеми другими, то закон распределения этой превалирующей ошибки наложит свое влияние на сумму и определит в основных чертах её закон распределения.

Теоремы, устанавливающие нормальный закон как предельный для суммы независимых равномерно малых случайных слагаемых, будут подробнее рассмотрены в главе 13.

Нормальный закон распределения характеризуется плотностью вероятности вида:

Кривая распределения по нормальному закону имеет симметричный холмообразный вид (рис. 6.1.1). Максимальная ордината кривой, равная , соответствует точке ; по мере удаления от точки плотность распределения падает, и при кривая асимптотически приближается к оси абсцисс.

Выясним смысл численных параметров и , входящих в выражение нормального закона (6.1.1); докажем, что величина есть не что иное, как математическое ожидание, а величина - среднее квадратическое отклонение величины . Для этого вычислим основные числовые характеристики величины - математическое ожидание и дисперсию.

Применяя замену переменной

Нетрудно убедиться, что первый из двух интервалов в формуле (6.1.2) равен нулю; второй представляет собой известный интеграл Эйлера-Пуассона:

Следовательно,

т.е. параметр представляет собой математическое ожидание величины . Этот параметр, особенно в задачах стрельбы, часто называют центром рассеивания (сокращенно – ц. р.).

Вычислим дисперсию величины :

.

Применив снова замену переменной

Интегрируя по частям, получим:

Первое слагаемое в фигурных скобках равно нулю (так как при убывает быстрее, чем возрастает любая степень ), второе слагаемое по формуле (6.1.3) равно , откуда

Следовательно, параметр в формуле (6.1.1) есть не что иное, как среднее квадратическое отклонение величины .

Выясним смысл параметров и нормального распределения. Непосредственно из формулы (6.1.1) видно, что центром симметрии распределения является центр рассеивания . Это ясно из того, что при изменении знака разности на обратный выражение (6.1.1) не меняется. Если изменять центр рассеивания , кривая распределения будет смещаться вдоль оси абсцисс, не изменяя своей формы (рис. 6.1.2). Центр рассеивания характеризует положение распределения на оси абсцисс.

Размерность центра рассеивания – та же, что размерность случайной величины .

Параметр характеризует не положение, а самую форму кривой распределения. Это есть характеристика рассеивания. Наибольшая ордината кривой распределения обратно пропорциональна ; при увеличении максимальная ордината уменьшается. Так как площадь кривой распределения всегда должна оставаться равной единице, то при увеличении кривая распределения становится более плоской, растягиваясь вдоль оси абсцисс; напротив, при уменьшении кривая распределения вытягивается вверх, одновременно сжимаясь с боков, и становится более иглообразной. На рис. 6.1.3 показаны три нормальные кривые (I, II, III) при ; из них кривая I соответствует самому большому, а кривая III – самому малому значению . Изменение параметра равносильно изменению масштаба кривой распределения – увеличению масштаба по одной оси и такому же уменьшению по другой.

Нормальное распределение (normal distribution ) - играет важную роль в анализе данных.

Иногда вместо термина нормальное распределение употребляют термин гауссовское распределение в честь К. Гаусса (более старые термины, практически не употребляемые в настоящее время: закон Гаусса, Гаусса-Лапласа распределение).

Одномерное нормальное распределение

Нормальное распределение имеет плотность::

В этой формуле , фиксированные параметры, - среднее , - стандартное отклонение .

Графики плотности при различных параметрах приведены .

Характеристическая функция нормального распределения имеет вид:

Дифференцируя характеристическую функцию и полагая t = 0 , получаем моменты любого порядка.

Кривая плотности нормального распределения симметрична относительно и имеет в этой точке единственный максимум, равный

Параметр стандартного отклонения меняется в пределах от 0 до ∞.

Среднее меняется в пределах от -∞ до +∞.

При увеличении параметра кривая растекается вдоль оси х , при стремлении к 0 сжимается вокруг среднего значения (параметр характеризует разброс, рассеяние).

При изменении кривая сдвигается вдоль оси х (см. графики).

Варьируя параметры и , мы получаем разнообразные модели случайных величин, возникающие в телефонии.

Типичное применение нормального закона в анализе, например, телекоммуникационных данных - моделирование сигналов, описание шумов, помех, ошибок, трафика.

Графики одномерного нормального распределения

Рисунок 1. График плотности нормального распределения: среднее равно 0, стандартное отклонение 1

Рисунок 2. График плотности стандартного нормального распределения с областями, содержащими 68% и 95% всех наблюдений

Рисунок 3. Графики плотностей нормальных распределений c нулевым средним и разными отклонениями (=0.5, =1, =2)

Рисунок 4 Графики двух нормальных распределений N(-2,2) и N(3,2).

Заметьте, центр распределения сдвинулся при изменении параметра .

Замечание

В программе STATISTICA под обозначением N(3,2) понимается нормальный или гауссов закон с параметрами: среднее = 3 и стандартное отклонение =2.

В литературе иногда второй параметр трактуется как дисперсия , т.е. квадрат стандартного отклонения.

Вычисления процентных точек нормального распределения с помощью вероятностного калькулятора STATISTICA

С помощью вероятностного калькулятора STATISTICA можно вычислить различные характеристики распределений, не прибегая к громоздким таблицам, используемым в старых книгах.

Шаг 1. Запускаем Анализ / Вероятностный калькулятор / Распределения .

В разделе распределения выберем нормальное .

Рисунок 5. Запуск калькулятора вероятностных распределений

Шаг 2. Указываем интересующие нас параметры.

Например, мы хотим вычислить 95% квантиль нормального распределения со средним 0 и стандартным отклонением 1.

Укажем эти параметры в полях калькулятора (см. поля калькулятора среднее и стандартное отклонение).

Введем параметр p=0,95.

Галочка «Обратная ф.р». отобразится автоматически. Поставим галочку «График».

Нажмем кнопку «Вычислить» в правом верхнем углу.

Рисунок 6. Настройка параметров

Шаг 3. В поле Z получаем результат: значение квантиля равно 1,64 (см. следующее окно).

Рисунок 7. Просмотр результата работы калькулятора

Рисунок 8. Графики плотности и функции распределения. Прямая x=1,644485

Рисунок 9. Графики функции нормального распределения. Вертикальные пунктирные прямые- x=-1.5, x=-1, x=-0.5, x=0

Рисунок 10. Графики функции нормального распределения. Вертикальные пунктирные прямые- x=0.5, x=1, x=1.5, x=2

Оценка параметров нормального распределения

Значения нормального распределения можно вычислить с помощью интерактивного калькулятора .

Двумерное нормальное распределение

Одномерное нормальное распределение естественно обобщается на двумерное нормальное распределение.

Например, если вы рассматриваете сигнал только в одной точке, то вам достаточно одномерного распределения, в двух точках - двумерного, в трех точках - трехмерного и т.д.

Общая формула для двумерного нормального распределения имеет вид:

Где - парная корреляция между X 1 и X 2 ;

X 1 соответственно;

Среднее и стандартное отклонение переменной X 2 соответственно.

Если случайные величины Х 1 и Х 2 независимы, то корреляция равна 0, = 0, соответственно средний член в экспоненте зануляется, и мы имеем:

f(x 1 ,x 2) = f(x 1)*f(x 2)

Для независимых величин двумерная плотность распадается в произведение двух одномерных плотностей.

Графики плотности двумерного нормального распределения

Рисунок 11. График плотности двумерного нормального распределения (нулевой вектор средних, единичная ковариационная матрица)

Рисунок 12. Сечение графика плотности двумерного нормального распределения плоскостью z=0.05

Рисунок 13. График плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и 0.5 на побочной)

Рисунок 14. Сечение графика плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и 0.5 на побочной) плоскостью z= 0.05

Рисунок 15. График плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и -0.5 на побочной)

Рисунок 16. Сечение графика плотности двумерного нормального распределения (нулевой вектор мат. ожидания, ковариационная матрица с 1 на главной диагонали и -0.5 на побочной) плоскостью z=0.05

Рисунок 17. Сечения графиков плотностей двумерного нормального распределения плоскостью z=0.05

Для лучшего понимания двумерного нормального распределения попробуйте решить следующую задачу.

Задача. Посмотрите на график двумерного нормального распределения. Подумайте, можно ли его представить, как вращение графика одномерного нормального распределения? Когда нужно применить прием деформации?

Закон нормального распределения, так называемый закон Гаусса - один из самых распространенных законов. Это фундаментальный закон в теории вероятностей и в ее применении. Нормальное распределение чаще всего встречается в изучении природных и социально-экономических явлений. Иначе говоря, большинство статистических совокупностей в природе и обществе подчиняется закону нормального распределения. Соответственно можно сказать, что совокупности большого числа крупных по объему выборок подчиняются закону нормального распределения. Те из совокупностей, которые отклоняются от нормального распределения в результате специальных преобразований, могут быть приближены к нормальному. В связи с этим следует помнить, что принципиальная особенность этого закона применительно к другим законам распределения заключается в том, что он является законом границы, к которой приближаются другие законы распределения в определенных (типовых) условиях.

Следует отметить, что термин "нормальное распределение" имеет условный смысл, как общепринятый в математической и статистико-математической литературе термин. Утверждение, что тот или иной признак любого явления подчиняется закону нормального распределения, вовсе не означает незыблемость норм, будто присущих исследуемому явлению, а отнесения последнего ко второму виду закона не означает какую-то анормальнисть данного явления. В этом смысле термин "нормальное распределение" не совсем удачен.

Нормальное распределение (закон Гаусса-Лапласа) является типом непрерывного распределения. Где Муавр (одна тысяча семьсот семьдесят три, Франция) вывел нормальный закон распределения вероятностей. Основные идеи этого открытия были использованы в теории ошибок впервые К. Гауссом (1809, Германия) и А.Лапласом (1812, Франция), которые внесли витчутний теоретический вклад в разработку самого закона. В частности, К. Гаусс в своих разработках исходил из признания наиболее вероятным значением случайной величины-среднюю арифметическую. Общие условия возникновения нормального распределения установил А.М.Ляпунова. Им было доказано, что если исследуемая признак представляет собой результат суммарного воздействия многих факторов, каждый из которых мало связан с большинством остальных, и влияние каждого фактора на конечный результат гораздо перекрывается суммарным воздействием всех остальных факторов, то распределение становится близким к нормальному.

Нормальным называют распределение вероятностей непрерывной случайной величины, имеет плотность:

1 +1 (& #) 2

/ (х, х, <т) = - ^ е 2 ст2

где х - математическое ожидание или средняя величина. Как видно, нормальное распределение определяется двумя параметрами: х и °. Чтобы задать нормальное распределение, достаточно знать математическое ожидание или среднее и среднее квадратическое отклонение. Эти две величины определяют центр группировки и форму

кривой на графике. График функции и (хх, в) называется нормальной кривой (кривая Гаусса) с параметрами х и в (рис. 12).

Кривая нормального распределения имеет точки перегиба при X ± 1. Если представить графически, то между X = + l и 1 = -1 находится 0,683 части всей площади кривой (т.е. 68,3%). В границах X = + 2 и X- 2. находятся 0,954 площади (95,4%), а между X = + 3 и X = - 3 - 0,997 части всей площади распределения (99,7%). На рис. 13 проиллюстрирован характер нормального распределения с одно-, двух- и трисигмовою границами.

При нормальном распределении средняя арифметическая, мода и медиана будут равны между собой. Форма нормальной кривой имеет вид одновершинные симметричной кривой, ветки которой асимптотически приближаются к оси абсцисс. Наибольшая ордината кривой соответствует х = 0. В этой точке на оси абсцисс размещается численное значение признаков, равное средней арифметической, моде и медиане. По обе стороны от вершины кривой ее ветки приходят, изменяя в определенных точках форму выпуклости на вогнутость. Эти точки симметричные и соответствуют значениям х = ± 1, то есть величинам признаки, отклонения которых от средней численно равна среднему квадратичному отклонению. Ордината, что соответствует средней арифметической, делит всю площадь между кривой и осью абсцисс пополам. Итак, вероятности появления значений исследуемого признака больших и меньших средней

арифметической будут равны 0,50, то есть х, (~ ^ х) = 0,50 В

Рис.12. Кривая нормального распределения (кривая Гаусса)

Форму и положение нормальной кривой обусловливают значение средней и среднего квадратичного отклонения. Математически доказано, что изменение величины среднего (математического ожидания) не изменяет формы нормальной кривой, а приводит лишь к ее смещение вдоль оси абсцисс. Кривая сдвигается вправо, если ~ растет, и влево, если ~ приходит.

Рис.14. Кривые нормального распределения с различными значениями параметра в

Об изменении формы графика нормальной кривой при изменении

среднего квадратичного отклонения можно судить по максимуму

дифференциальной функции нормального распределения, равный 1

Как видно, при росте величины ° максимальная ордината кривой будет уменьшаться. Следовательно, кривая нормального распределения будет сжиматься к оси абсцисс и принимать более плосковершинных форму.

И, наоборот, при уменьшении параметра в нормальная кривая вытягивается в положительном направлении оси ординат, а форма "колокола" становится более гостровершиною (рис. 14). Отметим, что независимо от величины параметров ~ и в площадь, ограниченная осью абсцисс и кривой, всегда равен единице (свойство плотности распределения). Это наглядно иллюстрирует график (рис. 13).

Названные выше особенности проявления "нормальности" распределения позволяют выделить ряд общих свойств, которые имеют кривые нормального распределения:

1) любой нормальный кривая достигает точки максимума = х) приходит непрерывно вправо и влево от него, постепенно приближаясь к оси абсцисс;

2) любой нормальный кривая симметрична по отношению к прямой,

параллельной оси ординат и проходит через точку максимума = х)

максимальная ордината равна ^^^ я;

3) любой нормальный кривая имеет форму "колокола", имеет выпуклость, которая направлена вверх к точке максимума. В точках х ~ ° и х + в она меняет выпуклость, и, чем меньше а, тем острее "колокол", а чем больше а, тем более похилишою становится вершина "колокола" (рис.14). Изменение математического ожидания (при неизменной величине

в) не приводит к модификации формы кривой.

При х = 0 и ° = 1 нормальную кривую называют нормированной кривой или нормальным распределением в каноническом виде.

Нормированная кривая описывается следующей формуле:

Построение нормальной кривой по эмпирическим данным производится по формуле:

пи 1 - "" = --- 7 = е

где и ™ - теоретическая частота каждого интервала (группы) распределения; "- Сумма частот, равную объему совокупности; "- шаг интервала;

же - отношение длины окружности к ее диаметру, которое составляет

е - основание натуральных логарифмов, равна 2,71828;

Вторая и третья части формулы) является функцией

нормированного отклонения ЦЧ), которую можно рассчитать для любых значений X. Таблицы значений ЦЧ) обычно называют "таблицы ординат нормальной кривой" (приложение 3). При использовании этих функций рабочая формула нормального распределения приобретает простого вида:

Пример. Рассмотрим случай построения нормальной кривой на примере данных о распределении 57 работников по уровню дневного заработка (табл. 42). По данным таблицы 42, находим среднюю арифметическую:

~ = ^ = И6 54 =

Рассчитываем среднее квадратическое отклонение:

Для каждой строки таблицы находим значение нормированного отклонения

х и ~ х | 12 г => - = - ^ 2 = 1.92

а 6.25 (дд Я первого интервала и т.д.).

В графе 8 табл. 42 записываем табличное значение функции Ди) из приложения, например, для первого интервала X = 1.92 находим "1,9" против "2" (0.0632).

Для вычисления теоретических частот, то есть ординат кривой нормального распределения, вычисляется множитель:

* = ^ = 36,5 а 6,25

Все найденные табличные значения функции / (г) умножаем на 36,5. Так, для первого интервала получаем 0,0632x36,5 = 2,31 т. Принято немногочисленные

частоты (п "<5) объединять (в нашем примере - первые два и последние два интервала).

Если крайние теоретические частоты значительно отличаются от нуля, расхождение между суммами эмпирических и теоретических частот может оказаться значительной.

График распределения эмпирических и теоретических частот (нормальная кривая) по данным рассматриваемого примера показано на рисунке 15.

Рассмотрим пример определения частот нормального распределения для случая, когда в крайних интервалах отсутствует частота (табл. 43). Здесь эмпирическая

X - нормированное отклонение, (в) а - среднее квадратическое отклонение.

частота первого интервала равна нулю. Полученная сумма неуточненных частот не равна сумме их эмпирических значений (56 * 57). В этом случае рассчитывается теоретическая частота для умывания полученных значений центра интервала, нормированного отклонения и его функции.

В таблице 43 эти величины обведено прямоугольником. При построении графика нормальной кривой в таких случаях теоретическую кривую продолжают. В рассматриваемом случае нормальная кривая будет продолжена в сторону отрицательных отклонений от средней, поскольку первая не уточнена частота равна 5. Рассчитана теоретическая частота (уточненная) для первого интервала будет равен единице. По сумме уточнены частоты совпадают с эмпирическими

Таблица 42

Расчетные величины

Статистические параметры

Интервал,

Количество единиц,

х) 2

нормированное отделения,

теоретическая

частота нормального ряда распределения,

/ 0) х - а

>>

Тысяча шестьсот пятьдесят четыре

а = 6,25

^ i = 36,5 а

Таблица 43

Расчет частот нормального распределения (выравнивание эмпирических частот по нормальному закону)

Количество единиц,

Расчетные величины

Статистические параметры

Интервал (и-2)

Срединное значение (центр) интервала,

(je, -xf

^ x t -x) 1 n и

нормированное отклонение

x s - х

t = x --L

табличное значение функции, f (t)

теоретическая

частота нормального ряда распределения

уточненное значение теоретической частоты,

ш

-

-

-

-

-

о = 2,41

Рис. 15. Эмпирический распределение (1) и нормальная кривая (2)

Кривую нормального распределения по исследуемой совокупности можно построить и другим способом (в отличие, от рассмотренного выше). Так, если необходимо иметь приближенную представление о соответствии фактического распределения нормальному, вычисления осуществляют следующим последовательности. Определяют максимальную ординату, которая соответствует среднему размеру признаки), затем, вычислив среднее квадратическое отклонение, рассчитывают координаты точек кривой нормального распределения по схеме, изложенной в таблицах 42 и 43. Так, по исходным и расчетным данным таблицы 43 должны среднюю ~ = 26 Эта величина средней совпадает с центром четвертого интервала (25-27). Итак, частота этого интервала "20" может быть принята (при построении графика) максимальной ординату). Имея исчисленную дисперсию (в = 2,41 см. Табл. 43), рассчитываем значения координат всех необходимых точек кривой нормального распределения (табл. 44, 45). По полученным координатам чертим нормальную кривую (рис. 16), приняв максимальной ординату частоту четвертого интервала.

Согласованность эмпирического распределения с нормальным может быть установлена также путем упрощенных расчетов. Так, если отношение показателя степени асимметрии (^) к своей середнеквадраты-ческой ошибки ш а "или отношение показателя эксцесса (Е х) к своей среднеквадратического ошибки т & превышает по абсолютной величине число« 3 », делается вывод о несоответствии эмпирического распределения характера нормального распределения (то есть,

А ц Е х

если А> 3 или ш е "> 3).

Есть и другие, нетрудоемкие приемы установления "нормальности" распределения: а) сравнение средней арифметической с модой и медианой; б) использование цифр Вестергард; в) применение графического образа с помощью полулогарифмическая сетки Турбина; г) вычисление специальных критериев согласования и др.

Таблица 44

Координаты 7 точек кривой нормального распределения

Таблица 45

Вычисление координат точек кривой нормального распределения

x - 1,5 (7 =

х - а = 23,6

х - 0,5 (7 = = 24,8

х + 0,5ст = 27,2

х + а = 28,4

X + 1,5 (7 =

Рис.16. Кривая нормального распределения, построенная по семи точках

На практике при исследовании совокупности на предмет согласования ее распределения с нормальным часто пользуются "правилом 3сг".

Математически доказано вероятность того, что отклонение от средней по абсолютной величине будет меньше тройного среднего квадратичного отклонения, равно 0,9973, то есть, вероятность того, что абсолютная величина отклонения превышает тройное среднее квадратическое отклонение, равна 0,0027 или очень мала. Исходя из принципа невозможности маловероятных событий, можно считать практически невозможным "случай превышения" 3 ст. Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания (средней) не превышает тройного среднего квадратичного отклонения.

В практических расчетах действуют таким образом. Если при неизвестном характере распределения исследуемой случайной величины рассчитанное значение отклонения от средней окажется меньше значения 3 СТ, то есть основания полагать, что исследуемая признак распределена нормально. Если же указанный параметр превысит числовое значение 3 СТ, можно считать, что распределение исследуемой величины не согласуется с нормальным распределением.

Вычисления теоретических частот для исследуемого эмпирического ряда распределения принято называть выравниванием эмпирических кривых по нормальному (или любом другом) закона распределения. Этот процесс имеет важное как теоретическое, так практическое значение. Выравнивание эмпирических данных раскрывает закономерность в их распределении, которая может быть завуалирована случайной формой своего проявления. Установленную таким образом закономерность можно использовать для решения ряда практических задач.

С распределением, близким к нормальному, исследователь встречается в различных сферах науки и областях практической деятельности человека. В экономике такого рода распределения встречаются реже, чем, скажем, в технике или биологии. Обусловлено это самой природой социально-экономических явлений, которые характеризуются большой сложностью взаимосвязанных и взаимосвязанных факторов, а также наличием ряда условий, ограничивающих свободную "игру" случаев. Но экономист должен обращаться к нормальному распределению, анализируя строение эмпирических распределений, как к некоторому эталону. Такое сравнение позволяет выяснить характер тех внутренних условий, которые определяют данную фигуру распределения.

Проникновение сферы статистических исследований в область социально-экономических явлений позволило раскрыть существование большого количества различного типа кривых распределения. Однако не надо считать, что теоретическая концепция кривой нормального распределения вообще мало пригодна в статистико-математическом анализе такого типа явлений. Она может быть не всегда приемлема в анализе конкретного статистического распределения, но в области теории и практики выборочного метода исследования имеет первостепенное значение.

Назовем основные аспекты применения нормального распределения в статистико-математическом анализе.

1. Для определения вероятности конкретного значения признака. Это необходимо при проверке гипотез о соответствии того или иного эмпирического распределения нормальному.

2. При оценке ряда параметров, например, средних, методом максимального правдоподобия. Суть его заключается в определении такого закона, которому подчиняется совокупность. Определяется и оценка, которая дает максимальные значения. Лучшее приближение к параметрам генеральной совокупности дает отношение:

у = - 2 = е 2

3. Для определения вероятности выборочных средних относительно генеральных средних.

4. При определении доверительного интервала, в котором находится приближенное значение характеристик генеральной совокупности.

Во многих задачах, связанных с нормально распределенными случайными величинами, приходится определять вероятность попадания случайной величины , подчиненной нормальному закону с параметрами , на участок от до . Для вычисления этой вероятности воспользуемся общей формулой

где - функция распределения величины .

Найдем функцию распределения случайной величины , распределенной по нормальному закону с параметрами . Плотность распределения величины равна:

Отсюда находим функцию распределения

. (6.3.3)

Сделаем в интеграле (6.3.3) замену переменной

и приведем его к виду:

(6.3.4)

Интеграл (6.3.4) не выражается через элементарные функции, но его можно вычислить через специальную функцию, выражающую определенный интеграл от выражения или (так называемый интеграл вероятностей), для которого составлены таблицы. Существует много разновидностей таких функций, например:

;

и т.д. Какой из этих функций пользоваться – вопрос вкуса. Мы выберем в качестве такой функции

. (6.3.5)

Нетрудно видеть, что эта функция представляет собой не что иное, как функцию распределения для нормально распределенной случайной величины с параметрами .

Условимся называть функцию нормальной функцией распределения. В приложении (табл. 1) приведены таблицы значений функции .

Выразим функцию распределения (6.3.3) величины с параметрами и через нормальную функцию распределения . Очевидно,

Теперь найдем вероятность попадания случайной величины на участок от до . Согласно формуле (6.3.1)

Таким образом, мы выразили вероятность попадания на участок случайной величины , распределенной по нормальному закону с любыми параметрами, через стандартную функцию распределения , соответствующую простейшему нормальному закону с параметрами 0,1. Заметим, что аргументы функции в формуле (6.3.7) имеют очень простой смысл: есть расстояние от правого конца участка до центра рассеивания, выраженное в средних квадратических отклонениях; - такое же расстояние для левого конца участка, причем это расстояние считается положительным, если конец расположен справа от центра рассеивания, и отрицательным, если слева.

Как и всякая функция распределения, функция обладает свойствами:

3. - неубывающая функция.

Кроме того, из симметричности нормального распределения с параметрами относительно начала координат следует, что

Пользуясь этим свойством, собственно говоря, можно было бы ограничить таблицы функции только положительными значениями аргумента, но, чтобы избежать лишней операции (вычитание из единицы), в таблице 1 приложения приводятся значения как для положительных, так и для отрицательных аргументов.

На практике часто встречается задача вычисления вероятности попадания нормально распределенной случайной величины на участок, симметричный относительно центра рассеивания . Рассмотрим такой участок длины (рис. 6.3.1). Вычислим вероятность попадания на этот участок по формуле (6.3.7):

Учитывая свойство (6.3.8) функции и придавая левой части формулы (6.3.9) более компактный вид, получим формулу для вероятности попадания случайной величины, распределенной по нормальному закону на участок, симметричный относительно центра рассеивания:

. (6.3.10)

Решим следующую задачу. Отложим от центра рассеивания последовательные отрезки длиной (рис. 6.3.2) и вычислим вероятность попадания случайной величины в каждый из них. Так как кривая нормального закона симметрична, достаточно отложить такие отрезки только в одну сторону.

По формуле (6.3.7) находим:

(6.3.11)

Как видно из этих данных, вероятности попадания на каждый из следующих отрезков (пятый, шестой и т.д.) с точностью до 0,001 равны нулю.

Округляя вероятности попадания в отрезки до 0,01 (до 1%), получим три числа, которые легко запомнить:

0,34; 0,14; 0,02.

Сумма этих трех значений равна 0,5. Это значит, что для нормально распределенной случайной величины все рассеивания (с точностью до долей процента) укладывается на участке .

Это позволяет, зная среднее квадратическое отклонение и математическое ожидание случайной величины, ориентировочно указать интервал её практически возможных значений. Такой способ оценки диапазона возможных значений случайной величины известен в математической статистике под названием «правило трех сигма». Из правила трех сигма вытекает также ориентировочный способ определения среднего квадратического отклонения случайной величины: берут максимальное практически возможное отклонение от среднего и делят его на три. Разумеется, этот грубый прием может быть рекомендован, только если нет других, более точных способов определения .

Пример 1. Случайная величина , распределенная по нормальному закону, представляет собой ошибку измерения некоторого расстояния. При измерении допускается систематическая ошибка в сторону завышения на 1,2 (м); среднее квадратическое отклонения ошибки измерения равно 0,8 (м). Найти вероятность того, что отклонение измеренного значения от истинного не превзойдет по абсолютной величине 1,6 (м).

Решение. Ошибка измерения есть случайная величина , подчиненная нормальному закону с параметрами и . Нужно найти вероятность попадания этой величины на участок от до . По формуле (6.3.7) имеем:

Пользуясь таблицами функции (приложение, табл. 1), найдем:

; ,

Пример 2. Найти ту же вероятность, что и в предыдущем примере, но при условии, что систематической ошибки нет.

Решение. По формуле (6.3.10), полагая , найдем:

Пример 3. По цели, имеющей вид полосы (автострада), ширина которой равна 20 м, ведется стрельба в направлении, перпендикулярном автостраде. Прицеливание ведется по средней линии автострады. Среднее квадратическое отклонение в направлении стрельбы равно м. Имеется систематическая ошибка в направлении стрельбы: недолет 3 м. Найти вероятность попадания в автостраду при одном выстреле.

Нормальное распределение - наиболее часто встречающийся вид распределения. С ним приходится встречаться при анализе погрешностей измерений, контроле технологических процессов и режимов, а также при анализе и прогнозировании различных явлений в биологии , медицине и других областях знаний.

Термин «нормальное распределение» применяется в условном смысле как общепринятый в литературе, хотя и не совсем удачный. Так, утверждение, что какой-то признак подчиняется нормальному закону распределения, вовсе не означает наличие каких-либо незыблемых норм, якобы лежащих в основе явления, отражением которого является рассматриваемый признак, а подчинение другим законам распределения не означает какую-то анормальность данного явления.

Главная особенность нормального распределения состоит в том, что оно является предельным, к которому приближаются другие распределения. Нормальное распределение впервые открыто Муавром в 1733 году. Нормальному закону подчиняются только непрерывные случайные величины. Плотность нормального закона распределения имеет вид .

Математическое ожидание для нормального закона распределения равно . Дисперсия равна .

Основные свойства нормального распределения.

1. Функция плотности распределения определена на всей числовой оси Ох , то есть каждому значению х соответствует вполне определённое значение функции.

2. При всех значениях х (как положительных, так и отрицательных) функция плотности принимает положительные значения, то есть нормальная кривая расположена над осью Ох .

3. Предел функции плотности при неограниченном возрастании х равен нулю, .

4. Функция плотности нормального распределения в точке имеет максимум .

5. График функции плотности симметричен относительно прямой .

6. Кривая распределения имеет две точки перегиба с координатами и .

7. Мода и медиана нормального распределения совпадают с математическим ожиданием а .

8. Форма нормальной кривой не изменяется при изменении параметра а .

9. Коэффициенты асимметрии и эксцесса нормального распределения равны нулю.

Очевидна важность вычисления этих коэффициентов для эмпирических рядов распределения, так как они характеризуют скошеннность и крутость данного ряда по сравнению с нормальным.

Вероятность попадания в интервал находится по формуле , где нечётная табулированная функция.

Определим вероятность того, что нормально распределённая случайная величина отклоняется от своего математического ожидания на величину, меньшую , то есть найдём вероятность осуществления неравенства , или вероятность двойного неравенства . Подставляя в формулу, получим

Выразив отклонение случайной величины Х в долях среднего квадратического отклонения, то есть положив в последнем равенстве, получим .


Тогда при получим ,

при получим ,

при получим .

Из последнего неравенства следует, что практически рассеяние нормально распределённой случайной величины заключено на участке . Вероятность того, что случайная величина не попадёт на этот участок, очень мала, а именно равна 0,0027, то есть это событие может произойти лишь в трёх случаях из 1000. Такие события можно считать практически невозможными. На приведённых рассуждениях основано правило трёх сигм , которое формулируется следующим образом: если случайная величина имеет нормальное распределение, то отклонение этой величины от математического ожидания по абсолютной величине не превосходит утроенного среднего квадратического отклонения .

Пример 28 . Деталь, изготовленная автоматом, считается годной, если отклонение её контролируемого размера от проектного не превышает 10 мм. Случайные отклонения контролируемого размера от проектного подчинены нормальному закону распределения со средним квадратическим отклонением мм и математическим ожиданием . Сколько процентов годных деталей изготавливает автомат?

Решение. Рассмотрим случайную величину Х - отклонение размера от проектного. Деталь будет признана годной, если случайная величина принадлежит интервалу . Вероятность изготовления годной детали найдём по формуле . Следовательно, процент годных деталей, изготавливаемых автоматом, равен 95,44%.

Биномиальное распределение

Биномиальным является распределение вероятностей появления m числа событий в п независимых испытаниях, в каждом из которых вероятность появления события постоянна и равна р . Вероятность возможного числа появлений события вычисляется по формуле Бернулли: ,

где . Постоянные п и р , входящие в это выражение, параметры биномиального закона. Биномиальным распределением описывается распределение вероятностей дискретной случайной величины.

Основные числовые характеристики биномиального распределения. Математическое ожидание равно . Дисперсия равна . Коэффициенты асимметрии и эксцесса равны и . При неограниченном возрастании числа испытаний А и Е стремятся к нулю, следовательно, можно предположить, что биномиальное распределение сходится к нормальному с возрастанием числа испытаний.

Пример 29 . Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А в одном испытании, если дисперсия числа появлений в трёх испытаниях равна 0,63.

Решение. Для биномиального распределения . Подставим значения, получим отсюда или тогда и .

Распределение Пуассона

Закон распределения редких явлений

Распределение Пуассона описывает число событий m , происходящих за одинаковые промежутки времени при условии, что события происходят независимо друг от друга с постоянной средней интенсивностью. При этом число испытаний п велико, а вероятность появления события в каждом испытании р мала. Поэтому распределение Пуассона называют законом редких явлений или простейшим потоком. Параметром распределения Пуассона является величина , характеризующая интенсивность появления событий в п испытаниях. Формула распределения Пуассона .

Пуассоновским распределением хорошо описываются число требований на выплату страховых сумм за год, число вызовов, поступивших на телефонную станцию за определённое время, число отказов элементов при испытании на надёжность, число бракованных изделий и так далее.

Основные числовые характеристики для распределения Пуассона. Математическое ожидание равно дисперсии и равно а . То есть . Это является отличительной особенностью этого распределения. Коэффициенты асимметрии и эксцесса соответственно равны .

Пример 30 . Среднее число выплат страховых сумм в день равно двум. Найти вероятность того, что за пять дней придётся выплатить: 1) 6 страховых сумм; 2) менее шести сумм; 3) не менее шести. или экспоненциальное распределение.

Это распределение часто наблюдается при изучении сроков службы различных устройств, времени безотказной работы отдельных элементов, частей системы и системы в целом, при рассмотрении случайных промежутков времени между появлениями двух последовательных редких событий.

Плотность показательного распределения определяется параметром , который называют интенсивностью отказов . Этот термин связан с конкретной областью приложения - теорией надёжности.

Выражение интегральной функции показательного распределения можно найти, используя свойства дифференциальной функции:

Математическое ожидание показательного распределения , дисперсия , среднее квадратическое отклонение . Таким образом, для этого распределения характерно, что среднее квадратическое отклонение численно равно математическому ожиданию. При любом значении параметра коэффициенты асимметрии и эксцесса - постоянные величины .

Пример 31 . Среднее время работы телевизора до первого отказа равно 500 часов. Найти вероятность того, что наудачу взятый телевизор проработает без поломок более 1000 часов.

Решение. Так как среднее время работы до первого отказа равно 500, то . Искомую вероятность найдём по формуле .