Какой процесс есть причиной создания космической пыли. Разгадана тайна звездной пыли. Механизм образования воды в структуре космической пыли

  • Дата: 17.06.2022

Сверхновая SN2010jl Фото: NASA/STScI

Астрономы впервые наблюдали в реальном времени образование космической пыли в ближайших окрестностях сверхновой, что позволило им объяснить это загадочное явление, происходящее в два этапа. Процесс начинается вскоре после взрыва, но продолжается ещё много лет, пишут исследователи в журнале "Nature".

Мы все состоим из звездной пыли, из элементов, которые и являются строительным материалом для новых небесных тел. Астрономы давно предполагали, что эта пыль образуется при взрыве звезд. Но как именно это происходит и как пылевые частицы не разрушаются в окрестностях галактик, где идёт активное оставалось до сих пор загадкой.

Этот вопрос впервые прояснили наблюдения, сделанные с помощью Very Large Telescope в обсерватории Паранал на севере Чили. Международная исследовательская группа под руководством Кристы Галл (Christa Gall) из датского университета Орхуса исследовали сверхновую, возникшую в 2010 году в галактике, удаленной от нас на 160 млн. световых лет. Исследователи в течение месяцев и первых лет наблюдали с каталожным номером SN2010jl в видимом и инфракрасном световом диапазоне с помощью спектрографа X-Shooter.

„Когда мы комбинировали данные наблюдений, мы смогли сделать первое измерение поглощения различных длин волн в пыли вокруг сверхновой, - объясняет Галл. - Это позволило нам узнать об этой пыли больше, чем известно было раньше". Таким образом стало возможным более подробно изучить различные размеры пылинок и их образование.

Пыль в непосредственной близости от сверхновой возникает в два этапа Фото: © ESO/M. Kornmesser

Как оказалось, пылевые частицы величиной более тысячной доли миллиметра образуются в плотном материале вокруг звезды относительно быстро. Размеры этих частиц удивительно велики для космических пылинок, что делает их устойчивыми к разрушению галактическими процессами. „Наше доказательство возникновения больших частиц пыли вскоре после взрыва сверхновой означает, что должен быть быстрый и эффективный способ их образования", - добавляет соавтор Йенс Хйорт (Jens Hjorth) из Университета Копенгагена. "Но мы пока не понимаем, как именно это происходит."

Тем не менее, у астрономов уже есть теория, базирующаяся на их наблюдениях. Исходя из неё, образование пыли протекает в 2 этапа:

  1. Звезда выталкивает материал в своё окружающее пространство незадолго до взрыва. Затем идет и распространяется ударная волна сверхновой, за которой создается прохладная и плотная оболочка газа - окружающая среда, в которые могут конденсироваться и расти пылевые частицы из ранее вытолкнутого материала.
  2. На второй стадии, через несколько сотен дней после взрыва сверхновой, добавляется материал, который был выброшен в самим взрывом и происходит ускоренный процесс образования пыли.

«В последнее время астрономы обнаружили много пыли в остатках сверхновых, которые возникли после взрыва. Тем не менее, они также нашли доказательства небольшого количества пыли, которая фактически возникла в самой сверхновой. Новые наблюдения объясняют, как может разрешаться это кажущееся противоречие", - пишет в заключение Криста Галл.

Наука

Ученые заметили большое облако космической пыли, созданное вспышкой сверхновой.

Космическая пыль может дать ответы на вопросы о том, как на Земле появилась жизнь - зародилась ли она здесь или была занесена с кометами, упавшими на Землю, была ли здесь вода с самого ее начала или она была также занесена из космоса.

Недавний снимок облака космической пыли, которая произошла после вспышки сверхновой доказывает, что сверхновые звезды способны производить достаточно космической пыли для создания таких планет, как наша Земля.

Более того, ученые считают, что этой пыли хватит, чтобы создать тысячи таких планет как Земля .



Данные телескопа показывают теплую пыль (белый цвет), которая выжила внутри остатка сверхновой. Облако остатка сверхновой Стрелец А Восток показано синим цветом. Радиоизлучение (красный цвет) указывает на столкновение расширяющейся ударной волны с окружающими межзвездными облаками (зеленый цвет).

Стоит отметить, что космическая пыль участвовала в создании как нашей планеты, так и многих других космических тел. Она состоит из маленьких частиц размером до 1 микрометра.

Сегодня уже известно, что кометы содержат первичную пыль, которой миллиарды лет, и которая играла главную роль в образовании Солнечной системы. Исследовав эту пыль можно многое узнать о том, как начинала создаваться Вселенная и наша Солнечная система в частности, а также узнать больше о составе первой органической материи и воды.

По словам Райана Лау (Ryan Lau) из Корнелльского университета в Итаке, Нью-Йорк, вспышка, недавно заснятая телескопом, произошла 10 000 лет назад , и в результате образовалось облако пыли достаточного размера, чтобы из него получилось 7 000 планет, похожих на Землю .

Наблюдения сверхновой звезды (Supernova)

С помощью Стратосферной обсерватории ИК-астрономии (Stratospheric Observatory for Infrared Astronomy, SOFIA) , ученые изучили интенсивность излучений, и смогли посчитать общую массу космической пыли в облаке.


Стоит отметить, что SOFIA является совместным проектом НАСА и Германского центра авиации и космонавтики . Целью проекта является создание и использование телескопа системы Кассегрена на борту самолета Боинг-474 .

Во время полета на высоте 12-14 километров , телескоп с диаметром окружности 2,5 метра способен создавать фотографии космоса, приближенные по качеству к фотографиям, которые делают космические обсерватории.


Под руководством Лау, команда использовала телескоп SOFIA со специальной камерой FORCASTна борту, чтобы сделать инфракрасные снимки облака из космической пыли, также известной, как остаток сверхновой Стрелец А Восток. FORCAST является инфракрасной камерой обнаружения слабоконтрастных объектов.

Во вселенной существуют миллиарды звезд и планет. И если звезда представляет собой пылающую сферу газа, то планеты, такие как Земля, составлены из твердых элементов. Планеты формируются в облаках пыли, которые циркулируют вокруг недавно сформировавшейся звезды. В свою очередь, зерна этой пыли составлены из таких элементов, как углерод, кремний, кислород, железо и магний. Но откуда же частицы космической пыли берутся? В новом исследовании, проведенном в Институте Нильса Бора в Копенгагене, показано, что зерна пыли могут не только сформироваться в гигантских взрывах сверхновых, они могут так же пережить последующие ударные волны различных взрывов, которые воздействуют на пыль.

Компьютерное изображение того, как формируется космическая пыль при взрывах сверхновых звезд. Источник: ESO/M. Kornmesser

То, как космическая пыль была сформирована, долго было тайной для астрономов. Сами по себе элементы пыли образуются в пылающем водородном газе в звездах. Атомы водорода соединяются друг с другом во все боле и более тяжелые элементы. В результате этого звезда начинает испускать излучение в виде света. Когда весь водород будет исчерпан и не получится больше извлекать энергию, звезда умирает, а ее оболочка улетает в космическое пространство, которая формирует различные туманности, в которых опять могут рождаться молодые звезды. Тяжелые элементы формируются, прежде всего, в сверхновых, прародителями которых являются массивные звезды, погибающие в гигантском взрыве. Но как одиночные элементы слипаются вместе чтобы сформировать космическую пыль – оставалось загадкой.

“Проблема состояла в том, что даже если бы пыль формировалась вместе с элементами при взрывах сверхновых звезд, само по себе это событие такое сильное, что эти мелкие зерна просто не должны были выжить. Но космическая пыль существует, причем ее частички могут быть совершенно разных размеров. Наше исследование проливает свет на эту проблему”, – профессор Йенс Хйорт, глава центра Темной космологии в Институте Нильса Бора.

Снимок телескопа Хаббл необычной карликовой галактики, в которой возникла яркая сверхновая SN 2010jl. Снимок был получен до ее появления, поэтому стрелкой показана ее звезда-прародитель. Взорвавшаяся звезда была очень массивной, приблизительно 40 солнечных масс. Источник: ESO

В исследованиях космической пыли ученые наблюдают за сверхновыми с помощью астрономического инструмента X-shooter, установленного на комплексе Очень большой телескоп (VLT) в Чили. Он обладает удивительной чувствительностью, а три спектрографа, входящие в его состав. могут наблюдать весь световой диапазон сразу, от ультрафиолетового и видимого до инфракрасного. Хйорт объясняет, что сначала они ожидали появления “правильного” взрыва сверхновой звезды. И вот, когда это произошло, началась кампания по ее наблюдению. Наблюдаемая звезда была необычайно яркой, в 10 раз ярче обычно средней сверхновой, а ее масса была в 40 раз больше солнечной. Всего наблюдение за звездой заняло у исследователей два с половиной года.

“Пыль поглощает свет, а пользуясь нашими данными мы смогли вычислить функцию, которая могла бы нам рассказать о количестве пыли, ее составе и размере зерен. В результаты мы обнаружили действительно нечто захватывающее”, – Криста Гол.

Первый шаг на пути формирования космической пыли – мини взрыв, в котором звезда выбрасывает в космос материал, содержащий водород, гелий и углерод. Это газовое облако становится своеобразной раковиной вокруг звезды. Еще немного подобных вспышек и раковина становится плотнее. Наконец, звезда взрывается, и плотное газовое облако полностью окутывает ее ядро.

“Когда звезда взрывается, ударная взрывная волна сталкивается с плотным газовым облаком как кирпич, налетевший на бетонную стену. Все это происходит в газовой фазе при невероятных температурах. Но то место, куда ударил взрыв, становится плотным и остывает до 2000 градусов Цельсия. При такой температуре и плотности элементы могут образовать ядро и сформировать твердые частицы. Мы обнаружили зерна пыли размерами в один микрон, что является очень большим значением для этих элементов. С такими размерами они вполне смогут пережить свое будущее путешествие сквозь галактику”.

Таким образом, ученые полагают, что нашли ответ на вопрос о том, как формируется и живет космическая пыль.

Исследование космической (метеорной ) пыли на поверхности Земли : обзор проблемы

А .П . Бояркина, Л .М . Гиндилис

Космическая пыль как астрономический фактор

Под космической пылью понимают частицы твердого вещества размером от долей микрона до нескольких микрон. Пылевая материя - один из важных компонентов космического пространства. Она заполняет межзвездное, межпланетное и околоземное пространство, пронизывает верхние слои земной атмосферы и выпадает на поверхность Земли в виде так называемой метеорной пыли, являясь одной из форм материального (вещественного и энергетического) обмена в системе «Космос - Земля». При этом она оказывает влияние на целый ряд процессов, происходящих на Земле.

Пылевая материя в межзвездном пространстве

Межзвездная среда состоит из газа и пыли, перемешанных в отношении 100:1 (по массе), т.е. масса пыли составляет 1% от массы газа. Средняя плотность газа составляет 1 атом водорода на кубический сантиметр или 10 -24 г/cм 3 . Плотность пыли соответственно в 100 раз меньше. Несмотря на столь ничтожную плотность, пылевая материя оказывает существенное влияние на процессы, происходящие в Космосе. Прежде всего, межзвездная пыль поглощает свет, из-за этого удаленные объекты, расположенные вблизи плоскости галактики (где концентрация пыли наибольшая), в оптической области не видны. Например, центр нашей Галактики наблюдается только в инфракрасной области, радиодиапазоне и рентгене. А другие галактики могут наблюдаться в оптическом диапазоне, если они расположены вдали от галактической плоскости, на высоких галактических широтах. Поглощение света пылью приводит к искажению расстояний до звезд, определяемых фотометрическим способом. Учет поглощения составляет одну из важнейших задач наблюдательной астрономии. При взаимодействии с пылью изменяется спектральный состав и поляризация света.

Газ и пыль в галактическом диске распределены неравномерно, образуя отдельные газопылевые облака, концентрация пыли в них приблизительно в 100 раз выше, чем в межоблачной среде. Плотные газопылевые облака не пропускают свет звезд, находящихся за ними. Поэтому они выглядят как темные области на небе, которые получили название темные туманности. Примером может служить область «Угольного мешка» в Млечном Пути или туманность «Конская голова» в созвездии Ориона. Если вблизи газопылевого облака находятся яркие звезды, то благодаря рассеянию света на частицах пыли такие облака светятся, они получили название отражательных туманностей. Примером может служить отражательная туманность в скоплении Плеяды. Наиболее плотными являются облака молекулярного водорода H 2 , плотность их в 10 4 -10 5 раз выше, чем в облаках атомарного водорода. Соответственно и плотность пыли во столько же раз выше. Помимо водорода молекулярные облака содержат десятки других молекул. Пылевые частицы являются ядрами конденсации молекул, на их поверхности происходят химические реакции с образованием новых, более сложных молекул. Молекулярные облака - область интенсивного звездообразования.

По составу межзвездные частицы состоят из тугоплавкого ядра (силикаты, графит, карбид кремния, железо) и оболочки из летучих элементов (H, H 2 , O, OH, H 2 O). Имеются также очень маленькие силикатные и графитовые частицы (без оболочки) размером порядка сотых долей микрона. Согласно гипотезе Ф.Хойла и Ч.Викрамасинга значительная доля межзвездной пыли, до 80%, состоит из бактерий.

Межзвездная среда непрерывно пополняется за счет притока вещества при сбросе оболочек звезд на поздних стадиях их эволюции (особенно при вспышках сверхновых). С другой стороны, она сама является источником образования звезд и планетных систем.

Пылевая материя в межпланетном и околоземном пространстве

Межпланетная пыль образуется главным образом в процессе распада периодических комет, а также при дроблении астероидов. Образование пыли происходит непрерывно, и также непрерывно идет процесс выпадения пылинок на Солнце под действием радиационного торможения. В результате образуется постоянно обновляющаяся пылевая среда, заполняющая межпланетное пространство и находящаяся в состоянии динамического равновесия. Плотность ее хотя и выше чем в межзвездном пространстве, но все же очень мала: 10 -23 -10 -21 г/см 3 . Тем не менее, она заметно рассеивает солнечный свет. При его рассеянии на частицах межпланетной пыли возникают такие оптические явления, как зодиакальный свет, фраунгоферова составляющая солнечной короны, зодиакальная полоса, противосияние. Рассеянием на пылинках обусловлена и зодиакальная составляющая свечения ночного неба.

Пылевая материя в Солнечной системе в сильной степени концентрируется к эклиптике. В плоскости эклиптики ее плотность убывает приблизительно пропорционально расстоянию от Солнца. Вблизи Земли, а также вблизи других больших планет концентрация пыли под действием их притяжения увеличивается. Частицы межпланетной пыли движутся вокруг Солнца по сокращающимся (вследствие радиационного торможения) эллиптическим орбитам. Скорость их движения составляет несколько десятков километров в секунду. При столкновении с твердыми телами, в том числе с космическими аппаратами, они вызывают заметную эрозию поверхности.

Сталкиваясь с Землей и сгорая в ее атмосфере на высоте около 100 км, космические частицы вызывают хорошо известное явление метеоров (или «падающих звезд»). На этом основании они получили название метеорных частиц, и весь комплекс межпланетной пыли часто называют метеорной материей или метеорной пылью. Большинство метеорных частиц представляют собой рыхлые тела кометного происхождения. Среди них выделяют две группы частиц: пористые частицы плотностью от 0,1 до 1 г/см 3 и так называемые пылевые комочки или пушистые хлопья, напоминающие снежинки с плотностью менее 0,1 г/см 3 . Кроме того, реже встречаются более плотные частицы астероидального типа плотностью более 1 г/см 3 . На больших высотах преобладают рыхлые метеоры, на высоте ниже 70 км - астероидальные частицы со средней плотностью 3,5 г/см 3 .

В результате дробления рыхлых метеорных тел кометного происхождения на высотах 100-400 км от поверхности Земли образуется достаточно плотная пылевая оболочка, концентрация пыли в которой в десятки тысяч раз выше, чем в межпланетном пространстве. Рассеяние солнечного света в этой оболочке обусловливает сумеречное свечение неба при погружении солнца под горизонт ниже 100 º .

Наиболее крупные и наиболее мелкие метеорные тела астероидального типа достигают поверхности Земли. Первые (метеориты) достигают поверхности в силу того, что они не успевают полностью разрушиться и сгореть при полете сквозь атмосферу; вторые - в силу того, что их взаимодействие с атмосферой, благодаря ничтожной массе (при достаточно большой плотности), происходит без заметного разрушения.

Выпадение космической пыли на поверхность Земли

Если метеориты уже давно были в поле зрения науки, то космическая пыль долгое время не привлекала внимание ученых.

Понятие о космической (метеорной) пыли было введено в науку во второй половине XIX столетия, когда известный голландский полярный исследователь Норденшельд (A.E. Nordenskjöld) обнаружил на поверхности льда пыль предположительно космического происхождения . Приблизительно в то же время, в середине 70-х годов XIX столетия Муррей (I. Murray) описал округлые магнетитовые частицы, обнаруженные в отложениях глубоководных осадков Тихого океана , происхождение которых также связывалось с космической пылью. Однако эти предположения долгое время не находили подтверждения, оставаясь в рамках гипотезы. Вместе с тем и научное изучение космической пыли продвигалось крайне медленно, на что указывал академик В.И. Вернадский в 1941 г. .

Впервые он обратил внимание на проблему космической пыли в 1908 г. и затем возвращался к ней в 1932 и 1941 годах . В работе «Об изучении космической пыли» В.И. Вернадский писал: «…Земля связана с космическими телами и с космическим пространством не только обменом разных форм энергии. Она теснейшим образом связана с ними материально… Среди материальных тел, падающих на нашу планету из космического пространства, доступны нашему непосредственному изучению преимущественно метеориты и обычно к ним причисляемая космическая пыль… Метеориты - и по крайней мере в некоторой своей части связанные с ними болиды - являются для нас всегда неожиданными в своем проявлении… Иное дело - космическая пыль: все указывает на то, что она падает непрерывно, и возможно, эта непрерывность падения существует в каждой точке биосферы, распределена равномерно на всю планету. Удивительно, что это явление, можно сказать, совсем не изучено и целиком исчезает из научного учета » .

Рассматривая в указанной статье известные наиболее крупные метеориты, В.И. Вернадский особое внимание уделяет Тунгусскому метеориту, поисками которого под его непосредственным руководством занимался Л.А. Кулик. Крупные осколки метеорита не были найдены, и в связи с этим В.И. Вернадский делает предположение, что он «…является новым явлением в летописях науки - проникновением в область земного притяжения не метеорита, а огромного облака или облаков космической пыли, шедших с космической скоростью » .

К этой же теме В.И. Вернадский возвращается в феврале 1941 г. в своем докладе «О необходимости организации научной работы по космической пыли» на заседании Комитета по метеоритам АН СССР . В этом документе, наряду с теоретическими размышлениями о происхождении и роли космической пыли в геологии и особенно в геохимии Земли, он подробно обосновывает программу поисков и сбора вещества космической пыли, выпавшей на поверхность Земли, с помощью которой, считает он, можно решить и ряд задач научной космогонии о качественном составе и «господствующем значении космической пыли в строении Вселенной». Необходимо изучать космическую пыль и учесть ее как источник космической энергии, непрерывно привносимой нам из окружающего пространства. Масса космической пыли, отмечал В.И.Вернадский, обладает атомной и другой ядерной энергией, которая не безразлична в своем бытии в Космосе и в ее проявлении на нашей планете. Для понимания роли космической пыли, подчеркивал он, необходимо иметь достаточный материал для ее исследования. Организация сбора космической пыли и научное исследование собранного материала - есть первая задача, стоящая перед учеными. Перспективными для этой цели В.И. Вернадский считает снеговые и ледниковые природные планшеты высокогорных и арктических областей, удаленных от промышленной деятельности человека.

Великая Отечественная война и смерть В.И. Вернадского, помешали реализации этой программы. Однако она стала актуальной во второй половине ХХ века и способствовала активизации исследований метеорной пыли в нашей стране .

В 1946 г. по инициативе академика В.Г. Фесенкова была организована экспедиция в горы Заилийского Ала-Тау (Северный Тянь-Шань), задачей которой было изучение твердых частиц с магнитными свойствами в снеговых отложениях . Место отбора снега было выбрано на левой боковой морене ледника Туюк-Су (высота 3500 м), большая часть хребтов, окружавших морену, была покрыта снегом, что снижало возможность загрязнения земной пылью. Оно было удалено и от источников пыли, связанных с деятельностью человека, и окружено со всех сторон горами.

Метод сбора космической пыли в снеговом покрове заключался в следующем. С полоски шириной 0,5 м до глубины 0,75 м собирался снег деревянной лопаткой, переносился и перетапливался в алюминиевой посуде, сливался в стеклянную посуду, где в течение 5 часов в осадок выпадала твердая фракция. Затем верхняя часть воды сливалась, добавлялась новая партия талого снега и т.д. В результате было перетоплено 85 ведер снега с общей площади 1,5 м 2 , объемом 1,1 м 3 . Полученный осадок был передан в лабораторию Института астрономии и физики АН Казахской ССР, где вода была выпарена и подверглась дальнейшему анализу. Однако поскольку эти исследования не дали определенного результата, Н.Б. Дивари пришел к выводу, что для отбора проб снега в данном случае лучше использовать либо очень старые слежавшиеся фирны, либо открытые ледники.

Значительный прогресс в изучении космической метеорной пыли наступил в середине ХХ века, когда в связи с запусками искусственных спутников Земли получили развитие прямые методы изучения метеорных частиц - непосредственная их регистрация по числу столкновений с космическим аппаратом или различного вида ловушками (установленными на ИСЗ и геофизических ракетах, запускаемых на высоту несколько сотен километров). Анализ полученных материалов позволил, в частности, обнаружить наличие пылевой оболочки вокруг Земли на высотах от 100 до 300 км над поверхностью (о чем говорилось выше).

Наряду с изучением пыли с помощью космических аппаратов проводилось изучение частиц в нижней атмосфере и различных природных накопителях: в высокогорных снегах, в ледниковом покрове Антарктиды, в полярных льдах Арктики, в торфяных отложениях и глубоководном морском иле. Последние наблюдаются преимущественно в виде так называемых «магнитных шариков», то есть плотных шаровых частиц, обладающих магнитными свойствами. Размер этих частиц от 1 до 300 микрон, масса от 10 -11 до 10 -6 г .

Еще одно направление связано с изучением астрофизических и геофизических явлений, связанных с космической пылью; сюда относятся различные оптические явления: свечение ночного неба, серебристые облака, зодиакальный свет, противосияние и др. Их изучение также позволяет получить важные данные о космической пыли . Исследования метеоров были включены в программу Международного геофизического года 1957-1959 и 1964-1965 гг.

В результате этих работ были уточнены оценки общего притока космической пыли на поверхность Земли. Согласно оценкам Т.Н. Назаровой, И.С. Астаповича и В.В. Федынского, общий приток космической пыли на Землю достигает до 10 7 т/год . По оценке А.Н. Симоненко и Б.Ю. Левина (по данным на 1972 г.) приток космической пыли на поверхность Земли составляет 10 2 -10 9 т/год , по другим, более поздним исследованиям - 10 7 -10 8 т/год .

Продолжались исследования по сбору метеорной пыли. По предложению академика А.П. Виноградова во время 14-й антарктической экспедиции (1968-1969 гг.) проводились работы с целью выявления закономерностей пространственно-временных распределений отложения внеземного вещества в ледниковом покрове Антарктиды . Изучался поверхностный слой снежного покрова в районах станций Молодежная, Мирный, Восток и на участке протяженностью около 1400 км между станциями Мирный и Восток. Отбор проб снега проводился из шурфов глубиной 2-5 м в точках, удаленных от полярных станций. Образцы упаковывались в полиэтиленовые мешки или специальные пластиковые контейнеры. В стационарных условиях образцы растапливались в стеклянной или алюминиевой посуде. Полученную воду фильтровали с помощью разборной воронки через мембранные фильтры (размер пор 0,7 мкм). Фильтры смачивали глицерином и в проходящем свете при увеличении 350Х определяли количество микрочастиц.

Изучались также полярные льды , донные отложения Тихого океана , осадочные породы , солевые отложения . При этом перспективным направлением показали себя поиски оплавленных микроскопических сферических частиц, достаточно легко идентифицируемых среди остальных фракций пыли.

В 1962 г. при Сибирском отделении АН СССР была создана Комиссия по метеоритам и космической пыли, возглавляемая академиком В.С. Соболевым, которая просуществовала до 1990 г. и создание которой было инициировано проблемой Тунгусского метеорита. Работы по изучению космической пыли проводились под руководством академика РАМН Н.В. Васильева.

При оценке выпадений космической пыли, наряду с другими природными планшетами, использовался торф, сложенный мхом сфагнум бурый по методике томского ученого Ю.А. Львова . Этот мох достаточно широко распространен в средней полосе земного шара, минеральное питание получает только из атмосферы и обладает способностью консервировать его в слое, бывшем поверхностным во время попадания на него пыли. Послойная стратификация и датировка торфа позволяет давать ретроспективную оценку ее выпадения. Изучались как сферические частицы размером 7-100 мкм, так и микроэлементный состав торфяного субстрата - функции содержавшейся в нем пыли.

Методика выделения космической пыли из торфа заключается в следующем . На участке верхового сфагнового болота выбирается площадка с ровной поверхностью и торфяной залежью, сложенной мхом сфагнум бурый (Sphagnum fuscum Klingr). С ее поверхности на уровне моховой дернины срезаются кустарнички. Закладывается шурф на глубину до 60 см, у борта его размечается площадка нужного размера (например, 10х10 см), затем с двух или трех его сторон обнажается колонка торфа, разрезается на пласты по 3 см каждый, которые упаковываются в полиэтиленовые пакеты. Верхние 6 слоев (очес) рассматриваются совместно и могут служить для определения возрастных характеристик по методике Е.Я. Мульдиярова и Е.Д. Лапшина . Каждый пласт в лабораторных условиях промывается сквозь сито с диаметром ячей 250 мк в течение не менее 5 мин. Прошедший сквозь сито гумус с минеральными частицами отстаивается до полного выпадения осадка, затем осадок сливается в чашку Петри, где высушивается. Упакованный в кальку, сухой образец удобен для перевозки и для дальнейшего изучения. В соответствующих условиях образец озоляется в тигле и муфельной печи в течение часа при температуре 500-600 град. Зольный остаток взвешивается и подвергается либо осмотру под бинокулярным микроскопом при увеличении в 56 раз на предмет выявления сферических частиц размером 7-100 и более мкм, либо подвергается другим видам анализа. Т.к. минеральное питание этот мох получает только из атмосферы, то его зольная составляющая может являться функцией входящей в ее состав космической пыли.

Так исследования в районе падения Тунгусского метеорита, удаленном от источников техногенного загрязнения на многие сотни километров, позволили оценить приток на поверхность Земли сферических частиц размером 7-100 мкм и более. Верхние слои торфа дали возможность оценить выпадение глобального аэрозоля на время исследования; слои, относящиеся к 1908 г. - вещества Тунгусского метеорита; нижние (доиндустриальные) слои - космической пыли. Приток космических микросферул на поверхность Земли при этом оценивается величиной (2-4)·10 3 т/год , а в целом космической пыли - 1,5·10 9 т/год . Были использованы аналитические методы анализа, в частности нейтронно-активационный, для определения микроэлементного состава космической пыли. По этим данным ежегодно на поверхность Земли выпадает из космического пространства (т/год): железа (2·10 6), кобальта (150), скандия (250) .

Большой интерес в плане указанных выше исследований представляют работы Е.М. Колесникова с соавторами, обнаружившими изотопные аномалии в торфе района падения Тунгусского метеорита, относящиеся к 1908 г. и говорящие, с одной стороны, в пользу кометной гипотезы этого явления, с другой - проливающие свет на кометное вещество, выпавшее на поверхность Земли .

Наиболее полным обзором проблемы Тунгусского метеорита, в том числе его вещества, на 2000 г. следует признать монографию В.А. Бронштэна . Последние данные о веществе Тунгусского метеорита были доложены и обсуждены на Международной конференции «100 лет Тунгусскому феномену», Москва, 26-28 июня 2008 г. . Несмотря на достигнутый прогресс в изучении космической пыли, ряд проблем все еще остается не решенным.

Источники метанаучного знания о космической пыли

Наряду с данными, которые получены современными методами исследования, большой интерес представляют сведения, содержащиеся во вненаучных источниках: «Письмах Махатм», Учении Живой Этики, письмах и трудах Е.И. Рерих (в частности, в ее работе «Изучение свойств человека», где дается обширная программа научных исследований на многие годы вперед) .

Так в письме Кут Хуми 1882 г. редактору влиятельной англоязычной газеты «Пионер» А.П. Синнету (оригинал письма хранится в Британском музее) приводятся следующие данные о космической пыли :

- «Высоко над нашей земной поверхностью воздух пропитан и пространство наполнено магнитной и метеорной пылью, которая даже не принадлежит нашей солнечной системе»;

- «Снег, в особенности в наших северных областях, полон метеорного железа и магнитных частиц, отложения последних находимы даже на дне океанов». «Миллионы подобных метеоров и тончайших частиц достигают нас ежегодно и ежедневно»;

- «каждое атмосферическое изменение на Земле и все пертурбации происходят от соединенного магнетизма» двух больших «масс» - Земли и метеорной пыли;

Существует «земное магнетическое притяжение метеорной пыли и прямое воздействие последней на внезапные изменения температуры, особенно в отношении тепла и холода»;

Т.к. «наша земля со всеми другими планетами несется в пространстве, она получает большую часть космической пыли на свое северное полушарие, нежели на южное»; «…этим объясняется количественное преобладание континентов в северном полушарии и большее изобилие снега и сырости»;

- «Тепло, которое получает земля от лучей солнца, является, в самой большей степени, лишь третью, если не меньше, количества получаемого ею непосредственно от метеоров»;

- «Мощные скопления метеорного вещества» в межзвездном пространстве приводят к искажению наблюдаемой интенсивности звездного света и, следовательно, к искажению расстояний до звезд, полученных фотометрическим путем.

Ряд этих положений опережали науку того времени и были подтверждены последующими исследованиями. Так, исследования сумеречного свечения атмосферы, выполненные в 30-50-х гг. XX века, показали, что, если на высотах меньше 100 км свечение определяется рассеянием солнечного света в газовой (воздушной) среде, то на высотах более 100 км преобладающую роль играет рассеяние на пылинках. Первые наблюдения, выполненные с помощью искусственных спутников, привели к обнаружению пылевой оболочки Земли на высотах несколько сот километров, на что указывается в упомянутом письме Кут Хуми. Особый интерес представляют данные об искажениях расстояний до звезд, полученных фотометрическим путем. По существу это было указанием на наличие межзвездного поглощения, открытого в 1930 г. Тремплером, которое по праву считается одним из важнейших астрономических открытий 20 века. Учет межзвездного поглощения привел к переоценке шкалы астрономических расстояний и, как следствие, к изменению масштаба видимой Вселенной .

Некоторые положения этого письма - о влиянии космической пыли на процессы в атмосфере, в частности на погоду, - не находят пока научного подтверждения. Здесь необходимо дальнейшее изучение.

Обратимся еще к одному источнику метанаучного знания - Учению Живой Этики, созданному Е.И. Рерих и Н.К. Рерихом в сотрудничестве с Гималайскими Учителями - Махатмами в 20-30 годы ХХ века. Первоначально изданные на русском языке книги Живой Этики в настоящее время переведены и изданы на многих языках мира. В них уделяется большое внимание научным проблемам. Нас в данном случае будет интересовать все, что связано с космической пылью.

Проблеме космической пыли, в частности ее притоку на поверхность Земли, в Учении Живой Этики уделяется достаточно много внимания.

«Обращайте внимание на высокие места, подверженные ветрам от снежных вершин. На уровне двадцати четырех тысяч футов можно наблюдать особые отложения метеорной пыли» (1927-1929 гг.) . «Недостаточно изучают аэролиты, еще меньше уделяют внимания космической пыли на вечных снегах и глетчерах. Между тем Космический Океан рисует свой ритм на вершинах» (1930-1931 гг.) . «Пыль метеорная недоступна глазу, но дает очень существенные осадки» (1932-1933 гг.) . «На самом чистом месте самый чистый снег насыщен пылью земной и космической, - так наполнено пространство даже при грубом наблюдении» (1936 г.) .

Вопросам космической пыли большое внимание уделено и в «Космологических записях» Е.И. Рерих (1940 г.) . Следует иметь в виду, что Е.И.Рерих внимательно следила за развитием астрономии и была в курсе последних ее достижений; она критически оценивала некоторые теории того времени (20-30 годы прошлого столетия), например в области космологии, и ее представления подтвердились в наше время . Учение Живой Этики и Космологические записи Е.И. Рерих содержат целый ряд положений о тех процессах, которые сопряжены с выпадением космической пыли на поверхность Земли и которые можно обобщить следующим образом:

На Землю постоянно кроме метеоритов выпадают материальные частицы космической пыли, которые привносят космическое вещество, несущее информацию о Дальних Мирах космического пространства;

Космическая пыль изменяет состав почв, снега, природных вод и растений;

Особенно это относится к местам залегания природных руд, которые не только являются своеобразными магнитами, притягивающими космическую пыль, но и следует ожидать некоторой дифференциации ее в зависимости от вида руды: «Так железо и прочие металлы притягивают метеоры, особенно когда руды находятся в естественном состоянии и не лишены космического магнетизма» ;

Большое внимание в Учении Живой Этики уделяется горным вершинам, которые по утверждению Е.И. Рерих «…являются величайшими магнитными станциями» . «…Космический Океан рисует свой ритм на вершинах» ;

Изучение космической пыли может привести к открытию новых, еще не обнаруженных современной наукой минералов, в частности - металла, обладающего свойствами, помогающими хранить вибрации с дальними мирами космического пространства;

При изучении космической пыли могут быть обнаружены новые виды микробов и бактерий ;

Но что особенно важно, Учение Живой Этики открывает новую страницу научного познания - воздействия космической пыли на живые организмы, в том числе - на человека и его энергетику. Она может оказывать разновидные влияния на организм человека и некоторые процессы на физическом и, особенно, тонком планах .

Эти сведения начинают находить подтверждение в современных научных исследованиях. Так в последние годы на космических пылинках были обнаружены сложные органические соединения и некоторые ученые заговорили о космических микробах . В этом плане особый интерес представляют работы по бактериальной палеонтологии, выполненные в Институте палеонтологии РАН . В этих работах, помимо земных пород, исследовались метеориты. Показано, что найденные в метеоритах микроокаменелости представляют собой следы жизнедеятельности микроорганизмов, часть которых подобна цианобактериям. В ряде исследований удалось экспериментально показать положительное влияние космического вещества на рост растений и обосновать возможность влияния его на организм человека .

Авторы Учения Живой Этики настоятельно рекомендуют организовать постоянное наблюдение за выпадением космической пыли. И в качестве ее природного накопителя использовать ледниковые и снеговые отложения в горах на высоте свыше 7 тыс. м. Рерихи, живя долгие годы в Гималаях, мечтают о создании там научной станции. В письме от 13 октября 1930 г. Е.И. Рерих пишет: «Станция должна развиться в Город Знания. Мы желаем в этом Городе дать синтез достижений, потому все области науки должны быть впоследствии представлены в нем… Изучение новых космических лучей, дающих человечеству новые ценнейшие энергии, возможно только на высотах , ибо все самое тонкое и самое ценное и мощное лежит в более чистых слоях атмосферы. Также разве не заслуживают внимания все метеорические осадки, осаждающиеся на снежных вершинах и несомые в долины горными потоками?» .

Заключение

Изучение космической пыли в настоящее время превратилось в самостоятельную область современной астрофизики и геофизики. Эта проблема особенно актуальна, поскольку метеорная пыль является источником космического вещества и энергии, непрерывно привносимых на Землю из космического пространства и активно влияющих на геохимические и геофизические процессы, а также оказывающих своеобразное воздействие на биологические объекты, в том числе на человека. Эти процессы пока еще почти не изучены. В изучении космической пыли не нашли должного применения ряд положений, содержащихся в источниках метанаучного знания. Метеорная пыль проявляется в земных условиях не только как феномен физического мира, но и как материя, несущая энергетику космического пространства, в том числе - миров иных измерений и иных состояний материи. Учет этих положений требует разработки совершенно новой методики изучения метеорной пыли. Но важнейшей задачей по-прежнему остается сбор и анализ космической пыли в различных природных накопителях.

Список литературы

1. Иванова Г.М., Львов В.Ю., Васильев Н.В., Антонов И.В. Выпадение космического вещества на поверхность Земли - Томск: изд-во Томск. ун-та, 1975. - 120 с.

2. Murray I. On the distribution of volcanic debris over the floor of ocean //Proc. Roy. Soc. Edinburg. - 1876. - Vol. 9.- P. 247-261.

3. Вернадский В.И. О необходимости организованной научной работы по космической пыли //Проблемы Арктики. - 1941. - № 5. - С. 55-64.

4. Вернадский В.И. Об изучении космической пыли //Мироведение. - 1932. - № 5. - С. 32-41.

5. Астапович И.С. Метеорные явления в атмосфере Земли. - М.: Госуд. изд. физ.-мат. литературы, 1958. - 640 с.

6. Флоренский К.П. Предварительные результаты тунгусской метеоритной комплексной экспедиции 1961 г. //Метеоритика. - М.: изд. АН СССР, 1963. - Вып. XXIII. - С. 3-29.

7. Львов Ю.А. О нахождении космического вещества в торфе //Проблема Тунгусского метеорита. - Томск: изд. Томск. ун-та, 1967. - С. 140-144.

8. Виленский В.Д. Сферические микрочастицы в ледниковом покрове Антарктиды //Метеоритика. - М.: «Наука», 1972. - Вып. 31. - С. 57-61.

9. Голенецкий С.П., Степанок В.В. Кометное вещество на Земле //Метеоритные и метеорные исследования. - Новосибирск: «Наука» Сибирское отделение, 1983. - С. 99-122.

10. Васильев Н.В., Бояркина А.П., Назаренко М.К. и др. Динамика притока сферической фракции метеорной пыли на поверхности Земли //Астроном. вестник. - 1975. - Т. IX. - № 3. - С. 178-183.

11. Бояркина А.П., Байковский В.В., Васильев Н.В. и др. Аэрозоли в природных планшетах Сибири. - Томск: изд. Томск. ун-та, 1993. - 157 с.

12. Дивари Н.Б. О сборе космической пыли на леднике Туюк-Су // Метеоритика. - М.: Изд. АН СССР, 1948. - Вып. IV. - С. 120-122.

13. Гиндилис Л.М. Противосияние как эффект рассеяния солнечного света на частицах межпланетной пыли //Астрон. ж. - 1962. - Т. 39. - Вып. 4. - С. 689-701.

14. Васильев Н.В., Журавлев В.К., Журавлева Р.К. и др. Ночные светящиеся облака и оптические аномалии, связанные с падением Тунгусского метеорита. - М.: «Наука», 1965. - 112 с.

15. Бронштэн В.А., Гришин Н.И. Серебристые облака. - М.: «Наука», 1970. - 360 с.

16. Дивари Н.Б. Зодиакальный свет и межпланетная пыль. - М.: «Знание», 1981. - 64 с.

17. Назарова Т.Н. Исследование метеорных частиц на третьем советском искусственном спутнике Земли //Искусственные спутники Земли. - 1960. - № 4. - С. 165-170.

18. Астапович И.С., Федынский В.В. Успехи метеорной астрономии в 1958-1961 гг. //Метеоритика. - М.: Изд. АН СССР, 1963. - Вып. XXIII. - С. 91-100.

19. Симоненко А.Н., Левин Б.Ю. Приток космического вещества на Землю //Метеоритика. - М.: «Наука», 1972. - Вып. 31. - С. 3-17.

20. Hadge P.W., Wright F.W. Studies of particles for extraterrestrial origin. A comparison of microscopic spherules of meteoritic and volcanic origin //J. Geophys. Res. - 1964. - Vol. 69. - № 12. - P. 2449-2454.

21. Parkin D.W., Tilles D. Influx measurement of extraterrestrial material //Science. - 1968. - Vol. 159.- № 3818. - P. 936-946.

22. Ganapathy R. The Tunguska explosion of 1908: discovery of the meteoritic debris near the explosion side and the South pole. - Science. - 1983. - V. 220. - No. 4602. - P. 1158-1161.

23. Hunter W., Parkin D.W. Cosmic dust in recent deep-sea sediments //Proc. Roy. Soc. - 1960. - Vol. 255. - № 1282. - P. 382-398.

24. Sackett W. M. Measured deposition rates of marine sediments and implications for accumulations rates of extraterrestrial dust //Ann. N. Y. Acad. Sci. - 1964. - Vol. 119. - № 1. - P. 339-346.

25. Вийдинг Х.А. Метеорная пыль в низах кембрийских песчаников Эстонии //Метеоритика. - М.: «Наука», 1965. - Вып. 26. - С. 132-139.

26. Utech K. Kosmische Micropartical in unterkambrischen Ablagerungen //Neues Jahrb. Geol. und Palaontol. Monatscr. - 1967. - № 2. - S. 128-130.

27. Иванов А.В., Флоренский К.П. Мелкодисперсное космическое вещество из нижнепермских солей //Астрон. вестник. - 1969. - Т. 3. - № 1. - С. 45-49.

28. Mutch T.A. Abundances of magnetic spherules in Silurian and Permian salt samples //Earth and Planet Sci. Letters. - 1966. - Vol. 1. - № 5. - P. 325-329.

29. Бояркина А.П., Васильев Н.В., Менявцева Т.А. и др. К оценке вещества Тунгусского метеорита в районе эпицентра взрыва //Космическое вещество на Земле. - Новосибирск: «Наука» Сибирское отделение, 1976. - С. 8-15.

30. Мульдияров Е.Я., Лапшина Е.Д. Датировка верхних слоев торфяной залежи, используемой для изучения космических аэрозолей //Метеоритные и метеорные исследования. - Новосибирск: «Наука» Сибирское отделение, 1983. - С. 75-84.

31. Лапшина Е.Д., Бляхорчук П.А. Определение глубины слоя 1908 г. в торфе в связи с поисками вещества Тунгусского метеорита //Космическое вещество и Земля. - Новосибирск: «Наука» Сибирское отделение, 1986. - С. 80-86.

32. Бояркина А.П., Васильев Н.В., Глухов Г.Г. и др. К оценке космогенного притока тяжелых металлов на поверхность Земли //Космическое вещество и Земля. - Новосибирск: «Наука» Сибирское отделение, 1986. - С. 203 - 206.

33. Колесников Е.М. О некоторых вероятных особенностях химического состава Тунгусского космического взрыва 1908 г. // Взаимодействие метеоритного вещества с Землей. - Новосибирск: «Наука» Сибирское отделение, 1980. - С. 87-102.

34. Колесников Е.М., Бёттгер Т., Колесникова Н.В., Юнге Ф. Аномалии в изотопном составе углерода и азота торфов района взрыва Тунгусского космического тела 1908 г. //Геохимия. - 1996. - Т. 347. - № 3. - С. 378-382.

35. Бронштэн В.А. Тунгусский метеорит: история исследования. - М.: А.Д. Сельянов, 2000. - 310 с.

36. Труды Международной конференции «100 лет Тунгусскому феномену», Москва, 26-28 июня 2008 г.

37. Рерих Е.И. Космологические записи //У порога нового мира. - М.: МЦР. Мастер-Банк, 2000. - С. 235 - 290.

38. Чаша Востока. Письма Махатмы. Письмо XXI 1882 г. - Новосибирск: Сибирское отд. изд. «Детская литература», 1992. - С. 99-105.

39. Гиндилис Л.М. Проблема сверхнаучного знания //Новая Эпоха. - 1999. - № 1. - С. 103; № 2. - С. 68.

40. Знаки Агни-Йоги. Учение Живой Этики. - М.: МЦР, 1994. - С. 345.

41. Иерархия. Учение Живой Этики. - М.: МЦР, 1995. - С.45

42. Мир Огненный. Учение Живой Этики. - М.: МЦР, 1995. - Ч. 1.

43. Аум. Учение Живой Этики. - М.: МЦР, 1996. - С. 79.

44. Гиндилис Л.М. Читая письма Е.И. Рерих: конечна или бесконечна Вселенная? //Культура и Время. - 2007. - № 2. - С. 49.

45. Рерих Е.И. Письма. - М.: МЦР, Благотворительный фонд им. Е.И. Рерих, Мастер-Банк, 1999. - Т. 1. - С. 119.

46. Сердце. Учение Живой Этики. - М.: МЦР. 1995. - С. 137, 138.

47. Озарение. Учение Живой Этики. Листы Сада Мории. Книга вторая. - М.: МЦР. 2003. - С. 212, 213.

48. Божокин С.В. Свойства космической пыли //Соросовский образовательный журнал. - 2000. - Т. 6. - № 6. - С. 72-77.

49. Герасименко Л.М., Жегалло Е.А., Жмур С.И. и др. Бактериальная палеонтология и исследования углистых хондритов //Палеонтологический журнал. -1999. - № 4. - C. 103-125.

50. Васильев Н.В., Кухарская Л.К., Бояркина А.П. и др. О механизме стимуляции роста растений в районе падения Тунгусского метеорита //Взаимодействие метеорного вещества с Землей. - Новосибирск: «Наука» Сибирское отделение, 1980. - С. 195-202.

В межзвездном и межпланетном пространстве встречаются мелкие частицы твердых тел — то, что в повседневной жизни мы называем пылью. Скопление этих частиц мы именуем космической пылью, чтобы отличить ее от пыли в земном значении, хотя их физическое строение сходно. Это частицы размером от 0,000001 сантиметра до 0,001 сантиметра, химический состав которых, в общем, до сих пор неизвестен.

Частицы эти, нередко образуют облака, которые обнаруживаются разными путями. Так, например, в нашей планетной системе присутствие космической пыли было обнаружено благодаря тому, что солнечный свет, рассеиваясь на ней, вызывает явление, издавна известное как «зодиакальный свет». Зодиакальный свет мы наблюдаем в исключительно ясные ночи в виде слабо светящейся полосы, тянущейся на небе вдоль Зодиака, он постепенно слабеет, по мере того как мы отдаляемся от Солнца (находящегося в это время за горизонтом). Измерения интенсивности зодиакального света и изучение его спектра показывают, что он происходит от рассеивания солнечного света на частицах, образующих облако космической пыли, окружающих Солнце и достигающих орбиты Марса (Земля, таким образом, находится внутри облака космической пыли).
Присутствие облаков космической пыли в межзвездных пространствах обнаруживается таким же путем.
Если какое-нибудь облако пыли очутится вблизи относительно светлой звезды, то свет от этой звезды будет рассеиваться на облаке. Мы обнаруживаем тогда это облако пыли в виде светлого пятнышка, именуемого «нерегулярной туманностью» (рассеянной туманностью).
Иногда облако космической пыли становится видимым потому, что оно загораживает собой расположенные за ним звезды. Тогда мы его различаем в виде относительно темного пятна на фоне усеянного звездами небесного пространства.
Третий путь обнаружения космической пыли — изменение цвета звезд. Звезды, которые находятся за облаком космической пыли, в общем, более интенсивно красные. Космическая пыль, так же, впрочем, как и земная, вызывает «покраснение» света, который через нее проходит. Это явление мы часто можем наблюдать на Земле. В туманные ночи мы видим, что фонари, расположенные от нас вдалеке, сильнее окрашены в красный цвет, чем ближние фонари, свет которых практически остается неизменным. Мы должны однако сделать оговорку: изменение окраски вызывает только пыль, состоящая из малых частиц. И именно такая пыль чаще всего встречается в межзвездных и межпланетных пространствах. А из факта, что пыль эта вызывает «покраснение» света звезд, лежащих за ней, мы делаем вывод, что размеры ее частиц малы, около 0.00001 см.
Нам точно неизвестно, откуда берется космическая пыль. Вернее всего, она возникает из тех газов, которые постоянно выбрасывают звезды, особенно молодые. Газ при низких температурах замерзает и превращается в твердое тело — в частицы космической пыли. И, наоборот, часть этой пыли, очутившись в относительно высокой температуре, например поблизости от какой-нибудь горячей звезды, либо во время столкновения двух облаков космической пыли, что, в общем говоря, в нашей области Вселенной явление нередкое, снова превращается в газ.