Становление современной физической картины мира. Понятие механической картины мира Важнейший принцип обеспечивающий построение механической картины мира

  • Дата: 21.07.2022

Механистическая картина мира – картина мира, занимавшая господствующее положение в умах и настроениях в XVI-XVIII вв., что было обусловлено особым положением механики как науки. Ее разделяли многие философы и естествоиспытатели: Ньютон, Лаплас, Гоббс, Декарт и др. В основе механистического мировоззрения – представление о мире как гигантском механизме, законы функционирования которого адекватно описываются законами механики.

Становление механистической картины мира происходило под влиянием метафизических материалистических представлений о материи и формах ее существования. Ее основу составили идеи и законы механики, которая в XVII в. была наиболее разработанным разделом физики. По сути, именно механика явилась первой фундаментальной физической теорией. Идеи, принципы и теории механики представляли собой совокупность наиболее существенных знаний о физических закономерностях, наиболее полно отражали физические процессы в природе.

В широком смысле механика изучает механическое движение материальных тел и происходящее при этом взаимодействие между ними. Под механическим движением понимают изменение с течением времени взаимного положения тел или частиц в пространстве. Примерами механического движения в природе являются движение небесных тел, колебания земной коры, воздушные и морские течения и т.п. Происходящие в процессе механического движения взаимодействия представляют собой те действия тел друг на друга, в результате которых происходит изменение скоростей перемещения этих тел в пространстве или их деформация.

Важнейшими понятиями механики как фундаментальной физической теории стали материальная точка – тело, формы и размеры которого не существенны в данной задаче; абсолютно твердое тело – тело, расстояние между любыми точками которого остается неизменным, а его деформацией можно пренебречь. Оба вида материальных тел характеризуются с помощью следующих понятий: масса – мера количества вещества; вес – сила, с которой тело действует на опору. Масса всегда остается постоянной, вес же может меняться. Эти понятия выражаются через следующие физические величины: координаты, импульсы, энергию, силу.

Основу механической картины мира составил атомизм – теория, которая весь мир, включая человека, рассматривала как совокупность огромного числа неделимых материальных частиц – атомов. Они перемещались в пространстве и времени в соответствии с немногими законами механики. Материя – это вещество, состоящее из мельчайших, неделимых, абсолютно твердых движущихся частиц (атомов). Это и есть корпускулярное представление о материи.

Законы механики, которые регулировали как движение атомов, так и движение любых материальных тел, считались фундаментальными законами мироздания . Поэтому ключевым понятием механической картины мира было понятие движения, которое понималось как механическое перемещение. Тела обладают внутренним врожденным свойством двигаться равномерно и прямолинейно, а отклонения от этого движения связаны с действием на тело внешней силы (инерции). Единственной формой движения является механическое движение, т.е. изменение положения тела в пространстве с течением времени. Любое движение можно представить как сумму пространственных перемещений. Движение объяснялось на основе трех законов Ньютона. Все состояния механического движения тел по отношению ко времени оказываются в принципе одинаковыми, поскольку время считается обратимым. Закономерности более высоких форм движения материи должны сводиться к законам простейшей ее формы – механическому движению.

Все многообразие взаимодействий механическая картина мира сводила только к гравитационному , которое означало наличие сил притяжения между любыми телами; величина этих сил определялась законом всемирного тяготения. Поэтому, зная массу одного тела и силу гравитации, можно определить массу другого тела. Гравитационные силы являются универсальными, т.е. они действуют всегда и между любыми телами и сообщают любым телам одинаковое ускорение.

Решая проблему взаимодействия тел, Исаак Ньютон предложил принцип дальнодействия. Согласно этому принципу взаимодействие между телами происходит мгновенно на любом расстоянии, без материальных посредников, т.е. промежуточная среда в передаче взаимодействия участия не принимает.

Концепция дальнодействия тесно связана с пониманием пространства и времени как особых сред, вмещающих взаимодействующие тела. Ньютон предложил концепцию абсолютного пространства и абсолютного времени. Абсолютное пространство представлялось большим «черным ящиком», универсальным вместилищем всех материальных тел в природе. Но даже если бы все эти тела вдруг исчезли, абсолютное пространство все равно бы осталось. Аналогично, в образе текущей реки, представлялось и абсолютное время. Оно становилось универсальной длительностью всех процессов во Вселенной. И абсолютное пространство, и абсолютное время существуют совершенно независимо от материи, из чего следует, что пространство, время и материя представляют собой три не зависящих друг от друга сущности.

Таким образом, в соответствии с механической картиной мира Вселенная представляла собой хорошо отлаженный механизм, действующий по законам строгой необходимости, в котором все предметы и явления связаны между собой жесткими причинно-следственными отношениями. В таком мире нет случайностей – она полностью исключалась из картины мира. Случайным было только то, причин чего мы пока не знали. Но поскольку мир рационален, а человек наделен разумом, то, в конце концов, он может получить полное и исчерпывающее знание о бытии. Такой жесткий детерминизм находил свое выражение в форме динамических законов.

Жизнь и разум в механистической картине мира не обладали никакой качественной спецификой. Человек в этой картине мира рассматривался как природное тело в ряду других тел и поэтому оставался необъяснимым в своих «невещественных» качествах. Так что присутствие человека в мире не меняло ничего. Если бы человек однажды исчез с лица земли, мир продолжал бы существовать как ни в чем не бывало.

По сути дела, классическое естествознание не стремилось постичь человека. Подразумевалось, что мир природный, в котором нет ничего человеческого, можно описать объективно, и такое описание будет точной копией реальности. Рассмотрение человека как одного из винтиков хорошо отлаженной машины автоматически устраняло его из данной картины мира.

На основе механической картины мира в XVIII – начале XIX в. была разработана земная, небесная и молекулярная механика. Быстрыми темпами шло развитие техники. Это привело к абсолютизации механистической картины мира, и она стала рассматриваться в качестве универсальной.

Развитие механистической картины мира было обусловлено в основном развитием механики. Успех механики Ньютона в значительной мере способствовал абсолютизации ньютоновских представлений, что выразилось в попытках свести все многообразие явлений природы к механической форме движения материи. Такая точка зрения получила название механистического материализма (механицизм) . Однако развитие физики показало несостоятельность такой методологии, поскольку описать тепловые, электрические и магнитные явления с помощью законов механики, а также движение атомов и молекул этих физических явлений оказалось невозможно. В результате в XIX в. в физике наступил кризис, который свидетельствовал, что физика нуждалась в существенном изменении своих взглядов на мир.

Оценивая механистическую картину мира как один из этапов развития физической картины мира, необходимо иметь в виду, что с развитием науки основные положения механистической картины мира не были просто отброшены.

Развитие науки лишь раскрыло относительный характер механистической картины мира.

Несостоятельной оказалась не сама механистическая картина мира, а ее исходная философская идея – механицизм. В недрах механистической картины мира стали складываться элементы новой – электромагнитной – картины мира.

1 Последующие шаги в создании новой картины мира были сделаны итальянским ученым, одним из основателей точного естествознания Галилео Галилеем (1564-1642 гг.) и немецким астрономом Иоганном Кеплером (1571-1630 гг.). Оба они были убежденными последователями Коперника. Галилей впервые использовал подзорную трубу собственной конструкции для астрономических наблюдений, обнаружив горы на Луне, т.е. открыв, что Луна имеет не идеальную форму шара, присущую якобы лишь телам «небесной природы», а имеет вполне «земную» природу. Таким образом, была поколеблена идея, идущая еще от Аристотеля, о принципиальном различии между «совершенными» небесными телами и несовершенными земными. Другие астрономические открытия Галилея - обнаружение четырех спутников Юпитера (1610 г.), выявление фаз Венеры, наблюдение пятен на Солнце - имели огромное мировоззренческое значение, подтверждающее материальное единство мира. Наглядно было показано, что Земля не является единственным центром, вокруг которого должны обращаться все тела. Наконец, он доказывает, что Млечный путь состоит из скоплений бесчисленных звезд. Эти астрономические открытия совершили подлинный переворот в астрономической науке. Это было важным доказательством в пользу коперниковскои системы мира.

Галилео Галилей выступил также противником механики и астрономии Аристотеля. Он опровергал учение Аристотеля о том, что тяжелые тела падают быстрее, чем легкие. Изучая кинематику движения тел, он впервые использовал понятие инерции. Согласно господствовавшей тогда аристотелевской концепции понятие инерции не существовало и считалось, что всякое движение, кроме естественного, требует непрекращающегося воздействия, и прекращение воздействия приводит к немедленному прекращению движения. Галилей выступил против такой концепции.

Используя понятие инерции, Галилей объяснил, почему Земля при обращении вокруг Солнца и вращении вокруг своей оси сохраняет как атмосферу, так и все, что находится в атмосфере и на земной поверхности. Здесь проявился открытый Галилеем принцип относительности для механических явлений, известный как принцип относительности Галилея и утверждающий, что если законы механики справедливы в одной системе координат, то они справедливы и в любой другой системе координат, движущейся прямолинейно и равномерно относительно первой, т.е. в инерциальных системах отсчета. В другой формулировке закон звучит так: никакими опытами, проведенными в инерциальной системе отсчета, нельзя доказать, покоится система отсчета или движется! равномерно и прямолинейно. Все законы механики во всех инерциальных системах отсчета проявляются одинаково, в них пространство и время носят абсолютный характер, т.е. интервал времени и размеры тел не зависят от состояния движения системы отсчета.

Одновременно с законом инерции Галилей использовал и другое основное положение классической механики - закон независимости действия сил. Он применил его к движению тел в поле силы тяжести Земли.

В своих философских воззрениях, опирающихся на естественнонаучные выводы, Галилей стоит на позициях новой основанной им механической натурфилософии, механистического естествознания.

Он исходит из признания бесконечной и вечной Вселенной, всюду единой. Утверждает, что небесный мир состоит из таких же физических тел, как и Земля. Все явления природы, по его мнению, подчиняются одинаковым законам механики. Сама материя как реальная субстанция вещей состоит из абсолютно неизменных атомов (здесь Галилей опирается на атомизм Демокрита); всевозможные ее проявления сводятся к чисто количественным свойствам, поэтому все в природе можно измерить и вычислить; движение материи выступает в единой, универсальной механической форме. Во всех явлениях природы, по представлениям Галилея, обнаруживается строгая механическая причинность, поэтому в отыскании причин явлений и познании их внутренней необходимости состоит основная, подлинная цель науки, «высшая ступень знания».

Источником познания, по Галилею, является опыт. Он осуждал схоластику, оторванную от действительности и опирающуюся исключительно на авторитеты. Метод научного исследования Галилея сводился к тому, что из наблюдений и опытов устанавливается предположение - гипотеза, проверка которой на практике дает физический закон. В основных чертах этот метод стал методом естествознания.

До Галилея физика и математика существовали порознь. Он связал физику, объясняющую характер и причины движения, и математику, позволяющую описать это движение, т.е. сформулировать его закон. Как один из основателей классической механики, Галилей сделал два принципиально важных шага: обратился к физическому опыту и связал физику с математикой.

При разработке своей системы мира Коперник исходил из предположения, что Земля и планеты обращаются вокруг Солнца по круговым орбитам. Чтобы объяснить сложное движение планет по эклиптике, ему пришлось ввести в свою систему 48 эпициклов. И лишь благодаря усилиям немецкого астронома Иоганна Кеплера система мира Коперника приобрела простой и стройный вид. Кеплер совершил следующий шаг - открыл эллиптическую форму орбит и три закона, движения планет вокруг Солнца. Первые два закона Кеплера были опубликованы в 1609 г., третий - в I 1619 г. Наиболее важным для понимания общего устройства Солнечной системы был первый закон, утверждавший, что планеты обращаются вокруг Солнца по эллиптическим орбитам, а Солнце находится в фокусе одного из этих эллипсов. В свое время греки предполагали, что все небесные тела должны двигаться по кругу, потому что круг - самая совершенная из всех кривых. Хотя греки знали многое об эллипсах и их математических свойствах, они не дошли до понимания того, что, небесные тела могут двигаться как-то иначе, нежели по кругам или сложным сочетаниям кругов. Кеплер первым отважился высказать такую идею. Его законы имели решающее значение в истории науки прежде всего потому, что они способствовали доказательству закона тяготения Ньютона.

Кеплер настаивал на физическом объяснении явлений природы, не признавал теологических представлений (например, он доказывал, что кометы являются материальными телами), а также антропоморфного понимания природы, наделения ее духоподобными силами, выступал против алхимиков и астрологов.

Учение Кеплера о законах движения планет имело огромное значение для формирования естественнонаучной картины мира, i открывало путь к поиску более общих законов механического движения материальных тел и систем.

В трудах современников Галилея и Кеплера итальянского физика и математика Эванджелисты Торричелли (1608-1647 гг.) и французского математика, физика и философа Блеза Паскаля (1623-1662 гг.) развивалась экспериментальная физика. Кроме решения задачи о движении тела, брошенного под углом к гори-1 зонту, Торричелли впервые экспериментально доказал существование атмосферного давления в опытах с трубками со ртутью. Паскаль вошел в историю физики как автор закона о всесторонней равномерной передаче давления жидкости, закона сообщающихся сосудов и теории гидравлического пресса.

Становление и дальнейшее развитие механики зависело от математических описаний физических закономерностей, и в этом направлении необходимо выделить работы французского ученого] Рене Декарта (1596-1650 гг.). Декарт заложил основы аналитической геометрии, применил ее аппарат к описанию перемещения тел, разработал понятия переменной величины и функции . Я «Началах философии», опубликованных в 1644 г., Декарт сформулировал три закона природы. Первые два выражают принцип инерции, в третьем формулируется закон сохранения количества движения. В познании мира Декарт ставил на первое место проницательность ума. Он считал, что с помощью логических рассуждений можно построить картину мира. Последователей Декарта называли картезианцами (Картезий - латинизированное имя Декарта).

В мире Декарта материя тождественна пространству, все пространство заполнено материей, пустоты нет. Атомы отрицаются, материя делима до бесконечности. Все явления Декарт сводил к механическим перемещениям. Все взаимодействия осуществляются через давления, столкновения - одни части материи давят на другие, толкают их. Весь мир заполнен вихревыми движениями (движениями по кругу). Беспредельная делимость материи у Декарта не вполне последовательно сочетается с существованием «частиц материи». У Декарта имеются три типа таких частиц: вездесущие частицы неба, частицы огня и частицы плотной материи. Движение производится силой, исходящей от Бога. Эта же сила делит непрерывную материю на части и частицы и сохраняется в них, являясь источником их кругового (вихревого) движения, при котором одни частицы выталкиваются со своих мест другими.

Велика роль французского ученого и в развитии астрономии, Вселенная рассматривалась им как саморазвивающаяся система. Первоначально она находилась в хаотическом состоянии, затем движение частиц материи приобрело характер центробежных вихревых движений, в результате которых образовались небесные тела, включая Солнце и планеты. Таким образом, возникновение Солнечной системы и всей Вселенной происходит, по Декарту, без божественного вмешательства, на основе законов природы. «Бог так чудесно установил эти законы, что даже если предположить, что он не создал ничего, кроме сказанного (т.е. материи и движения), и не внес в материю никакого порядка, никакой соразмерности, а, наоборот, оставил лишь самый невообразимый хаос... то и в таком случае этих законов было бы достаточно, чтобы частицы хаоса сами распутались и расположились в таком прекрасном порядке, что они образовали бы весьма совершенный мир».

Учение Декарта явилось единой наукой. Как и философы древности, Декарт включил в свое учение натурфилософию. Однако в основу своей натурфилософии Декарт положил механику, и она носила механический односторонний характер, что было характерно для естествознания того времени. Декарта можно считать основоположником принципа близкодействия в физике. Вол новая теория света, теория электромагнитного поля, молекулярная физика являются развитием идей Декарта. Действительно, в трудах многих крупнейших физиков XIX в. можно найти идеи, которые являются развитием идей Декарта, высказанных им еще в XVII в.

Период формирования и становления естественных наук приходится примерно на XVII в.: начинается он с работ Галилея и заканчивается исследованиями Ньютона.

Галилей и Кеплер, исходя из динамических и кинематических законов Аристотеля, переосмысливали его механику и в итоге перехода от геоцентризма к гелиоцентризму пришли к своим кинематическим законам. Эти законы предопределили принципиально единую для земных и небесных тел механику Ньютона со всеми сформированными им классическими законами механики, включая закон всемирного тяготения. Галилей, изучая свободное падение тел, первым ввел понятие инерции и сформулировал принцип относительности для механических движений, известный как принцип относительности Галилея. Решающий вклад в становление механики внес английский физик Исаак Ньютон (1643-1727 гг.)

Стройную логическую систему физической картине мира придали законы механики, полученные Ньютоном и изложенные в его гениальной работе «Математические начала натуральной философии» (кратко - «Начала») в 1687 г. . Ньютон больше, чем кто-либо из других мыслителей его поколения, внес в научную картину мира не только нового содержания, но и принципиально новый стиль однозначного объяснения природы. Ньютон создал основы теории гравитационного поля, вывел закон тяготения, определяющий силу тяготения, которая действует на данную массу в любой точке пространства, если заданы масса и положение тела, служащего источником сил тяготения, т.е. притягивающего к себе другие тела.

Динамические законы Ньютона не только следуют из соответствующих кинематических законов Галилея и Кеплера, но и сами могут быть положены в основу всех трех кинематических законов Кеплера и обоих кинематических законов Галилея, а также всевозможных теоретически ожидаемых отклонений от них из-за сложного строения и взаимных гравитационных возмущений взаимодействующих тел.

И. Ньютон полагал, что мир состоит из корпускул, образующих тела и заполняющих пустоты между ними. Установив закон всемирного тяготения, Ньютон не дал объяснения причин тяготе и механизма передачи взаимодействия. Молодой Ньютон считал, что взаимодействие через пустоту осуществляет Бог. Позднее он приходит к гипотезе эфира как переносчика взаимодействия.

Период становления механики со временем превратился в период ее торжества. Механика стала основой мировоззрения. Все, что создал сам человек, все, что есть в природе, имеет, считалось, единую механическую сущность. Этому способствовали и дальнейшие открытия в естествознании, особенно в астрономии более позднего периода.

формирование механистической картины мира потребовало несколько столетий и завершилось лишь к середине XIX в. Ее следует рассматривать как важный этап в становлении естественнонаучной картины мира.

В этой системе мира вещества состоят из атомов и молекул, находящихся в непрерывном движении. Взаимодействия между телами происходят при непосредственном контакте (при действии сил упругости и трения) и на расстоянии (при действии сил тяготения). Пространство заполнено всепроникающим эфиром. Взаимодействие атомов рассматривается как механическое. Нет понимания сущности эфира. Согласно механистической картине мира гравитационные силы связывают все без исключения тела природы, они являются не специфическим, а общим взаимодействием. Законы тяготения определяют отношение материи к пространству и всех материальных тел друг к другу. Тяготение создает в этом смысле реальное единство Вселенной. Объяснение характера движения небесных тел и даже открытие новых планет Солнечной системы было триумфом ньютоновской теории тяготения. ч Механистическая картина мира была основана на следующих четырех принципах.

1. Мир строился на едином фундаменте - на законах механики Ньютона. Все наблюдаемые в природе превращения, а также тепловые явления на уровне микроявлений сводились к механике атомов и молекул, их перемещениям, столкновениям, сцеплениям, разъединениям. Считалось, что открытие в середине XIX в. Закона сохранения и превращения энергии также доказывало механическое единство мира.

2. В механистической картине мира все причинно-следственные связи однозначные, здесь господствует лапласовый детерминизм. В мире существует точность и возможность предопределения будущего.

3. В механистической картине мира отсутствует развитие - в целом таков, каким он был всегда. Механистическая картина мира фактически отвергала качественные изменения, сводя все к чисто количественным изменениям.

4. Механистическая картина исходила из представления, что микромир аналогичен макромиру. Считалось, что механика микромира может объяснить закономерности поведения атомов и молекул.

По своей сути эта картина мира являлась метафизической, все многообразие мира сводилось к механике, качественное развитие, как и все происходящее в мире, представлялось строго предопределенным и однозначным.

Метафизические взгляды на картину мира приводили исамого Ньютона к постоянному отступлению от естественнонаучного мировоззрения и к объяснению явлений сверхъестественными силами, т.е. вмешательством бога. Ньютон полагал, что Солнечная система от века существует такой, какой мы ее знаем сейчас. Но в таком случае начальное положение планеты на орбите и ее начальная скорость не находят физического объяснения. По Ньютону, планеты получили начальную скорость в виде толчка от бога. УстойчивостьСолнечной системы также не находит своего объяснения с помощью одних только сил тяготения, и Ньютон оставляет здесь место действию божественных сил.

Таким образом, Ньютонова концепция сил отводила определенную роль в природе богу, в отличие от картезианской физики, которая каждое явление объясняла специальной моделью вихря и согласно которой бог, однажды создав природу, уже больше в нее не вмешивается. В философских моделях мировоззрения это нашло глубокое отражение во всей противоречивости и сложности, присущей духовному миру человека в эпоху освобождения от путсхоластики.

Естественнонаучная картина мира в собственном смысле слова, как мы уже отметили, начинает формироваться только в эпоху возникновения научного естествознания в XVI-XVII вв. Анализируя процесс перестройки сознания в эпоху XVI-XVII вв., западный исследователь экстерналистского направления Э. Цильзель считает, что становление новых буржуазных экономических отношений, пронизанных духом рационализма, привело к постепенному ослаблению религиозного, магического восприятия мира и укреплению рациональных представлений о мироздании. А поскольку развитие производства потребовало развития механики, то картина мира данной эпохи приобрела механистический характер.

В истории научного знания классическая механика была новой теоретически развитой областью естествознания, ставшей основой л механистической картины мира. Механистическая картина мира была и остается тем началом, на котором основываются последующие картины мира, опирающиеся на успехи синергетики или идеи глобального эволюционизма.

Одной из характерных черт общенаучной картины мира является то, что ее основой выступает картина мира той области познания, которая занимает лидирующее положение в данный исторический период. В XVII-XVIII вв. лидирующее положение среди наук занимала механика, поэтому естественнонаучная картина мира получила название механистической. Законы механики распространялись также на общество и на человека.

СПИСОК ЛИТЕРАТУРЫ:

  1. Галилей Г. Диалог о двух системах мира //Галлией Избр. Тр. М., 164. Т.1.
  2. Беседы и математические доказательства //Там же Т.2.
  3. Декарт Р. Избранные произведения. М., 1950.
  4. Декарт Р. Сочинения 13, Т.2. М.: Мысль, 1989.
  5. Ньютон И. Математические начала натуральной философии. Пер. А.Н. Крылова //Изв. Николаев мор. акад. 1915. Вып.4.

Библиографическая ссылка

Раджабов О.Р. ФОРМИРОВАНИЕ МЕХАНИСТИЧЕСКОЙ КАРТИНЫ МИРА // Современные наукоемкие технологии. – 2007. – № 10. – С. 98-101;
URL: http://top-technologies.ru/ru/article/view?id=25571 (дата обращения: 04.01.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI - XVII вв., было связано долгое время с развитием физики. Именно физика была и остается сегодня наиболее развитой и систематизированной естественной наукой. Поэтому, когда возникло мировоззрение европейской цивилизации Нового времени, складывалась классическая картина мира, естественным было обращение к физике, ее концепциям и аргументам, во многом определившим эту картину. Степень разработанности физики была настолько велика, что она могла создать собственную физическую картину мира, в отличие от других естественных наук, которые лишь в XX веке смогли поставить перед собой эту задачу (создание химической и биологической картин мира).
Поэтому, начиная разговор о конкретных достижениях естествознания, мы начнем его с физики, с картины мира, созданной этой наукой.
Понятие «физическая картина мира» употребляется давно, но лишь в последнее время оно стало рассматриваться не только как итог развития физического знания, но и как особый самостоятельный вид знания - самое общее теоретическое знание в физике (система понятий, принципов и гипотез), служащее исходной основой для построения теорий. Физическая картина мира, с одной стороны, обобщает все ранее полученные знания о природе, а с другой - вводит в физику новые философские идеи и обусловленные ими понятия, принципы и гипотезы которых до этого не было и которые коренным образом меняют основы физического теоретического знания: старые физические понятия и принципы ломаются, новые возникают, картина мира меняется.
Развитие самой физики непосредственно связано с физической картиной мира. При постоянном возрастании количества опытных данных картина мира весьма длительное время остается относительно неизменной. С изменением физической картины мира начинается новый этап в развитии физики с иной системой исходных понятий, принципов, гипотез и стиля мышления. Переход от одного этапа к другому знаменует качественный скачок, революцию в физике, состоящую в крушении старой картины мира и в появлении новой.
В пределах данного этапа развитие физики идет эволюционным путем, без изменения основ картины мира. Оно состоит в реализации возможностей построения новых теорий, заложенных в данной картине мира. При этом она может эволюционировать, достраиваться, оставаясь в рамках определенных конкретно-физических представлений о мире.
Ключевым в физической картине мира служит понятие «материя», на которое выходят важнейшие проблемы физической науки. Поэтому смена физической картины мира связана со сменой представлений о материи. В истории физики это происходило два раза. Сначала был совершен переход от атомистических, корпускулярных представлений о материи к полевым - континуальным. Затем, в XX веке, континуальные представления были заменены современными квантовыми. Поэтому можно говорить о трех последовательно сменявших друг друга физических картинах мира.

МЕХАНИЧЕСКАЯ КАРТИНА МИРА

Она складывается в результате научной революции XVI -XVII вв. на основе работ Г. Галилея и П. Гассенди, восстановивших атомизм древних философов, исследований Декарта и Ньютона, завершивших построение новой картины мира, сформулировавших основные идеи, понятия и принципы, составившие механическую картину мира.
Основу механической картины мира составил атомизм, который весь мир, включая и человека, понимал как совокупность огромного числа неделимых частиц - атомов, перемещающихся в пространстве и времени.
Ключевым понятием механической картины мира было понятие движения. Именно законы движения Ньютон считал фундаментальными законами мироздания. Тела обладают внутренним врожденным свойством двигаться равномерно и прямолинейно, а отклонения от этого движения связаны с действием на тело внешней силы (инерции). Мерой инертности является масса, другое важнейшее понятие классической механики. Универсальным свойством тел является тяготение.
Решая проблемы взаимодействия тел, Ньютон предложил принцип дальнодействия. Согласно этому принципу взаимодействие между телами происходит мгновенно на любом расстоянии, без каких-либо материальных посредников.
Концепция дальнодействия тесно связана с пониманием пространства и времени как особых сред, вмещающих взаимодействующие тела. Ньютон предложил концепцию абсолютного пространства и времени. Пространство представлялось большим «черным ящиком», вмещающим все тела в мире, но если бы эти тела вдруг исчезли, пространство все равно бы осталось. Аналогично, в образе текущей реки, представлялось и время, также существующее абсолютно независимо от материи.
В механической картине мира любые события жестко предопределялись законами механики. Случайность в принципе исключалась из картины мира. Как говорил П. Лаплас, если бы нашелся гигантский ум, способный объять мир (знание о координатах всех тел в мире, а также силах, действующих на них), то он однозначно мог бы предсказать будущее этого мира.
Жизнь и разум в механической картине мира не обладали никакой качественной спецификой. Поэтому присутствие человека в мире не меняло ничего. Если бы человек однажды исчез с лица земли, мир продолжал бы существовать как ни в чем не бывало.
На основе механической картины мира в XVIII - начале XIX вв. была разработана земная, небесная и молекулярная механика. Быстрыми темпами шло развитие техники. Это привело к абсолютизации механической картины мира, к тому, что она стала рассматриваться в качестве универсальной.
В это же время в физике начали накапливаться эмпирические данные, противоречащие механической картине мира. Так, наряду с рассмотрением системы материальных точек, полностью соответствовавшей корпускулярным представлениям о материи, пришлось ввести понятие сплошной среды, связанное по сути дела, уже не с корпускулярными, а с континуальными представлениями о материи. Так, для объяснения световых явлений вводилось понятие эфира - особой тонкой и абсолютно непрерывной световой материи.
В XIX в. методы механики были распространены на область тепловых явлений, электричества и магнетизма. Казалось бы, это свидетельствовало о больших успехах механического понимания мира в качестве общей исходной основы науки. Но при попытке выйти за пределы механики материальных точек приходилось вводить все новые искусственные допущения, которые постепенно готовили крушение механической картины мира. Аналогично световым явлениям, для объяснения теплоты, электричества и магнетизма вводились понятия теплорода, электрической и магнитной жидкости как особых разновидностей сплошной материи.
Хотя механический подход к этим явлениям оказался неприемлемым, опытные факты искусственно подгонялись под механическую картину мира. Попытки построить атомистическую модель эфира продолжались еще и в XX веке.
Эти факты, не укладывающиеся в русло механической картины мира, свидетельствовали о том, что противоречия между установившейся системой взглядов и данными опыта оказались непримиримыми. Физика нуждалась в существенном изменении представлений о материи, в смене физической картины мира.

ЭЛЕКТРОМАГНИТНАЯ КАРТИНА МИРА

В процессе длительных размышлений о сущности электрических и магнитных явлений М. Фарадей пришел к мысли о необходимости замены корпускулярных представлений о материи континуальными, непрерывными. Он сделал вывод, что электромагнитное поле сплошь непрерывно, заряды в нем являются точечными силовыми центрами. Тем самым отпал вопрос о построении механической модели эфира, несовпадении механических представлений об эфире с реальными опытными данными о свойствах света, электричества и магнетизма. Основная трудность в объяснении света при помощи понятия эфира состояла в следующем: если эфир - сплошная среда, то он не должен препятствовать движению в нем тел и, следовательно, должен быть подобен очень легкому газу. В опытах со светом были установлены два фундаментальных факта: световые и электромагнитные колебания являются не продольными, а поперечными, и скорость распространения этих колебаний очень велика. В механике же было показано, что поперечные колебания возможны только в твердых телах, причем скорость их зависит от плотности тела. Для такой большой скорости, как скорость света, плотность эфира во много раз должна была превосходить плотность стали. Но тогда, как же двигаются тела?
Одним из первых идеи Фарадея оценил Максвелл. При этом он подчеркивал, что Фарадей выдвинул новые философские взгляды на материю, пространство, время и силы, во многом изменявшие прежнюю механическую картину мира.
Взгляды на материю менялись кардинально: совокупность неделимых атомов переставала быть конечным пределом делимости материи, в качестве такового принималось единое абсолютно непрерывное бесконечное поле с силовыми точечными центрами - электрическими зарядами и волновыми движениями в нем.
Движение понималось не только как простое механическое перемещение, первичным по отношению к этой форме движения становилось распространение колебаний в поле, которое описывалось не законами механики, а законами электродинамики.
Ньютоновская концепция абсолютного пространства и времени не подходила к полевым представлениям. Поскольку поле является абсолютно непрерывной материей, пустого пространства просто нет. Так же и время неразрывно связано с процессами, происходящими в поле. Пространство и время перестали быть самостоятельными, независимыми от материи сущностями. Понимание пространства и времени как абсолютных уступило место реляционной (относительной) концепции пространства и времени.
Новая картина мира требовала нового решения проблемы взаимодействия. Ньютоновская концепция дальнодействия заменялась фарадеевским принципом близкодействия; любые взаимодействия передаются полем от точки к точке непрерывно и с конечной скоростью. *
Хотя законы электродинамики, как и законы классической механики, однозначно предопределяли события, и случайность все еще пытались исключить из физической картины мира, создание кинетической теории газов ввело в теорию, а затем и в электромагнитную картину мира понятие вероятности. Правда, пока физики не оставляли надежды найти за вероятностными характеристиками четкие однозначные законы, подобные законам Ньютона.
Не менялось в электромагнитной картине мира представление о месте и роли человека во Вселенной. Его появление считалось лишь капризом природы. Идеи о качественной специфике жизни и разума с большим трудом прокладывали себе путь в научном мировоззрении.
Новая электромагнитная картина мира объяснила большой круг явлений, непонятных с точки зрения прежней механической картины мира. Она глубже вскрыла материальное единство мира, поскольку электричество и магнетизм объяснялись на основе одних и тех же законов.
Однако и на этом пути вскоре стали возникать непреодолимые трудности. Так, согласно электромагнитной картине мира, заряд стал считаться точечным центром, а факты свидетельствовали о конечной протяженности частицы-заряда. Поэтому уже в электронной теории Лоренца частица-заряд вопреки новой картине мира рассматривалась в виде твердого заряженного шарика, обладающего массой. Непонятными оказались результаты опытов Майкельсона 1881 - 1887 гг., где он пытался обнаружить движение тела по инерции при помощи приборов, находящихся на этом теле. По теории Максвелла, такое движение можно было обнаружить, но опыт не подтверждал этого. Но тогда об этих мелких неприятностях и неувязках физики постарались забыть, более того, выводы теории Максвелла были абсолютизированы, так что даже такой крупный физик, как Кирхгоф, считал, что в физике не осталось ничего неизвестного и неоткрытого.
Но к концу XIX в. накапливалось все больше необъяснимых несоответствий теории и опыта. Одни были обусловлены недостроенностью электромагнитной картины мира, другие вообще не согласовывались с континуальными представлениями о материи: трудности в объяснении фотоэффекта, линейчатый спектр атомов, теория теплового излучения.
Последовательное применение теории Максвелла к другим движущимся средам приводило к выводам о неабсолютности пространства и времени. Однако убежденность в их абсолютности была так велика, что ученые удивлялись своим выводам, называли их странными и отказывались от них. Именно так поступили Лоренц и Пуанкаре, чьи работы завершают доэйнштейновский период развития физики.
Принимая законы электродинамики в качестве основных законов физической реальности, А. Эйнштейн ввел в электромагнитную картину мира идею относительности пространства и времени и тем самым устранил противоречие между пониманием материи как определенного вида поля и ньютоновскими представлениями о пространстве и времени. Введение в электромагнитную картину мира релятивистских представлений о пространстве и времени открыло новые возможности для ее развития.
Именно так появилась общая теория относительности, ставшая последней крупной теорией, созданной в рамках электромагнитной картины мира. В этой теории, созданной в 1916 г., Эйнштейн впервые дал глубокое объяснение природы тяготения, для чего ввел Понятие об относительности пространства и времени и о кривизне единого четырехмерного пространственно-временного континуума, зависящей от распределения масс.
Но даже создание этой теории уже не могло спасти электромагнитную картину мира. С конца XIX в. обнаруживалось все больше непримиримых противоречий между электромагнитной теорией и фактами. В 1897 г. было открыто явление радиоактивности и установлено, что оно связано с превращением одних химических элементов в другие и сопровождается испусканием альфа- и бета-лучей. На этой основе появились эмпирические модели атома, противоречащие электромагнитной картине мира. А в 1900 г. М. Планк в процессе многочисленных попыток построить теорию излучения был вынужден высказать предположение о прерывности процессов излучения.

СТАНОВЛЕНИЕ СОВРЕМЕННОЙ ФИЗИЧЕСКОЙ КАРТИНЫ МИРА

В начале XX в. возникли два несовместимых представления о материи: 1) или она абсолютно непрерывна; 2) или состоит из дискретных частиц. Физики предпринимали многочисленные попытки совместить две эти точки зрения, но долгое время они оставались безрезультатными. Многим казалось, что физика зашла в тупик, из которого нет выхода.
Это смятение усугубилось, когда в 1913 г. Н. Бор предложил свою модель атома. Он предположил, что электрон, вращающийся вокруг ядра, вопреки законам электродинамики не излучает энергии. Он излучает ее порциями лишь при перескакивании с одной орбиты на другую. И хотя такое предположение казалось странным и непонятным, именно модель атома Бора в значительной степени способствовала формированию новых физических представлений о материи и движении. В 1924 г. Луи де Бройль высказал гипотезу о соответствии каждой частице определенной волны. Иными словами, каждой частице материи присущи и свойство волны (непрерывность), и дискретность (квантовость). Эти представления нашли подтверждение в работах Э. Шредингера и В. Гейзенберга 1925 -1927 гг., а вскоре М. Борн показал тождественность волновой механики Шредингера и квантовой механики Гейзенберга.
Так сложились новые, квантово-полевые представления о материи, которые определяются как корпускулярно-волновой дуализм - наличие у каждого элемента материи свойств волны и частицы. Ушли в прошлое и представления о неизменности материи. Одной из основных особенностей элементарных частиц является их универсальная взаимозависимость и взаимопревращаемость. В современной физике основным материальным объектом является квантовое поле, переход его из одного состояния в другое меняет число частиц.
Меняется представление о движении, которое становится лишь частным случаем физического взаимодействия. Известно четыре вида фундаментальных физических взаимодействий: гравитационное, электромагнитное, сильное и слабое. Они описываются на основе принципа близкодействия: взаимодействия передаются соответствующими полями от точки к точке, скорость передачи взаимодействия всегда конечна и не может превышать скорости света в вакууме (300 000 км/с).
Окончательно утверждаются представления об относительности пространства и времени, зависимость их от материи. Пространство и время перестают быть независимыми друг от друга и, согласно теории относительности, сливаются в едином четырехмерном пространственно-временном континууме.
Спецификой квантово-полевых представлений о закономерности и причинности является то, что они выступают в вероятностной форме, в виде так называемых статистических законов. Они соответствуют более глубокому уровню познания природных закономерностей.
Квантово-полевая картина мира впервые включает в себя наблюдателя, от присутствия которого зависит получаемая картина мира. Более того, сегодня считается, что наш мир таков, как он есть, только благодаря существованию человека, появление которого стало закономерным результатом эволюции Вселенной.
Квантово-полевая, квантово-релятивистская картина мира и в настоящее время находится в состоянии становления, и с каждым годом к ней добавляются новые элементы, выдвигаются новые гипотезы, создаются и развиваются новые теории.
Подробнее о проблемах, стоящих перед физической наукой, строящей картину мира, о содержании ее мы поговорим ниже.

План семинарского занятия (2 часа)

1. Понятие физической картины мира.
2. Механическая картина мира, ее основное содержание.
3. Электромагнитная картина мира.
4. Становление современной физической картины мира.

Темы докладов и рефератов

1. В.Гейэенберг о связи физики и философии.
2. Современная физика и восточный мистицизм.

ЛИТЕРАТУРА

1. Ахиезер А.И., Рекало М.П. Современная физическая картина мира. М., 1980.
2. Гейзенберг В. Физика и философия. Часть и целое. М., 1989.
3. Гудков Н.А. Идея «великого синтеза» в физике. Киев, 1990.
4. Единство физики. Новосибирск, 1993.
5. Капра Ф. Дао физики. СПб., 1994.
6. Пахомов Б.Я. Становление физической картины мира. М., 1985,

Формирование механической картины мира (МКМ) происходило в течение нескольких столетий до середины девятнадцатого века под сильным влиянием взглядов выдающихся мыслителей древности: Демокрита, Эпикура, Аристотеля, Лукреция и др. Она явилась необходимым и очень важным шагом на пути познания природы.

Имена учёных, внесших основной вклад в создание МКМ: Н.Коперник, Г.Галилей, Р.Декарт, И.Ньютон, П.Лаплас и др.

Рис. 2. Гелиоцентрическая система

Николай Коперник был первым человеком, сумевшим нанести сокрушительный удар по геоцентрическим системам мира. В мае 1543 года увидела свет его книга «О вращениях небесных сфер». Учение Коперника противоречило церковным воззрениям на устройство мира и сыграло огромную роль в истории мировой науки.

Основоположником механической картины мира по праву считается Галилео Галилей (Galilei) (1564-1642), итальянский ученый, один из основателей точного естествознания. Всеми своими силами он боролся против схоластики, считая единственно верной основой познания опыт. Деятельность Галилея не нравилась церкви, он был подвергнут суду инквизиции (1633), вынудившей его отречься от своего учения. До конца жизни Галилей был принужден жить под домашним арестом на своей вилле Арчетри близ Флоренции. И только в 1992 году папа Иоанн Павел II реабилитировал Галилея и объявил решение суда инквизиции ошибочным. В годы детства и юности Галилея в науке господствовали представления об окружающем мире, сохранившиеся со времён античности. И Галилей был одним из первых, кто отважился выступить против них. Механическая картина мира возникла, когда главным критерием истины был признан опыт, а для описания явлений природы стали активно применять математику. Многие ставшие догмой утверждения Аристотеля не выдерживали проверки опытом. Аристотель, например, утверждал, что скорость падения тел пропорциональна их весу. Галилей в присутствии многочисленных свидетелей проводил наблюдения за падением с Пизанской башни тел различной массы (например, мушкетной пули и пушечного ядра). Оказалось, что скорость падения тел не зависит от их массы. Важнейшим достижением Галилея было открытие принципа относительности. Галилей сконструировал первый в мире термоскоп, который явился прообразом термометра. Направив подзорную трубу в небо, он сделал несколько выдающихся астрономических открытий: спутники Юпитера, фазы Венеры, строение Млечного Пути, солнечные пятна, кратеры и горы на Луне. Наблюдения за движением небесных тел сделали его убеждённым сторонником гелиоцентрической системы (рис.5.28.1). Открытия Галилея подрывали доверие к официальным взглядам на строение мира, пропитанным религиозными догмами.

Рене Декарт (Descartes, или Cartesius, 1596-1650), французский философ, математик, физик и физиолог, заложивший основы аналитической геометрии, определивший понятия переменной величины и функции, предположил существование закона сохранения количества движения, положил в основу своих построений принцип несотворимости и неуничтожимости движения. При этом все формы движения он сводил к механическому перемещению тел.

Исаак Ньютон (Newton) (1643-1727), английский математик, механик, астроном и физик, разработал (независимо от Г. Лейбница) дифференциальное и интегральное исчисления. Он построил первый в мире зеркальный телескоп, чётко сформулировал основные законы классической механики, открыл закон всемирного тяготения, сформулировал теорию движения небесных тел, создав основы небесной механики. Пространство и время в механике Ньютона являются абсолютными. Следует сказать, что работы Ньютона в механике, оптике и математике намного опередили его время, а многие его работы актуальны и сейчас. На языке Ньютона говорит вся современная наука.

Лаплас (Laplace) Пьер Симон (1749-1827), французский астроном, математик, физик был автором классических трудов по теории вероятностей и небесной механике. Лапласом и Кантом была предложена гипотеза происхождения Солнечной системы из газопылевого облака, развитая современными астрономами.

Коротко перечислим основные черты механической картины мира.

Все материальные тела состоят из молекул, находящихся в непрерывном и хаотическом механическом движении. Материя - вещество, состоящее из неделимых частиц.

Взаимодействие тел осуществляется согласно принципа дальнодействия, мгновенно на любые расстояния (закон всемирного тяготения, закон Кулона), или при непосредственном контакте (силы упругости, силы трения).

Пространство - пустое вместилище тел. Всё пространство заполняет невидимая невесомая «жидкость» - эфир. Время - простая длительность процессов. Время абсолютно.

Всё движение происходит на основе законов механики Ньютона, все наблюдаемые явления и превращения сводятся к механическим перемещениям и столкновениям атомов и молекул. Мир выглядит как колоссальная машина с множеством деталей, рычагов, колёсиков.

Точно так же представляются и процессы, протекающие в живой природе.

Механика описывает все процессы, происходящие в микромире и макромире. В механической картине мира господствует лапласовский детерминизм - учение о всеобщей закономерной связи и причинной обусловленности всех явлений в природе.

Механика и оптика составляли основное содержание физики до начала XIX века. Картина мира строилась на достаточно очевидных и простых механических аналогиях. И в повседневной практической деятельности людей основные выводы классической механики не приводили к противоречиям с опытными данными.

Однако позже, с развитием средств измерения, стало известно, что при изучении многих явлений, например, небесной механики необходимо учитывать сложные эффекты, связанные с движением частиц со скоростями, близкими к световым.

Появились уравнения специальной теории относительности, с трудом вмещающиеся в рамки механических представлений. Изучая свойства микрочастиц, ученые выяснили, что в явлениях микромира частицы могут обладать свойствами волны.

Возникли трудности при описании электромагнитных явлений (испускание, распространение и поглощение света, электромагнитной волны), которые не могли быть разрешены классической ньютоновской механикой.

Однако с развитием науки механическая картина мира не была отброшена, а лишь был вскрыт её относительный характер. Механическая картина мира используется и сейчас во многих случаях, когда, например, в рассматриваемых нами явлениях материальные объекты движутся с небольшими скоростями, и мы имеем дело с небольшими энергиями взаимодействия. Механический взгляд на мир по-прежнему остается актуальным, когда мы сооружаем здания, строим дороги и мосты, проектируем плотины и прокладываем каналы, рассчитываем крыло самолета или решаем другие многочисленные задачи, возникающие в нашей повседневной человеческой жизни. (гелиоцентрическая система это представление о том, что Солнце является центральным небесным телом, вокруг которого обращается Земля и другие планеты.)

Первая естественнонаучная картина мира сформировалась на основе изучения простейшей, механической формы движения материи. Она исследует законы перемещения земных и небесных тел в пространстве и времени. В дальнейшем, когда эти законы и принципы были перенесены на другие явления и процессы, они стали основой механистической картины мира.

Созданием классической механики наука обязана Ньютону, но почву для него подготовили Галилей и Кеплер, с краткой характеристики их научных результатов мы и начнем эту главу.

3.1. Галилей и Кеплер - научные предшественники Ньютона

Становление механистической картины мира справедливо связывают с именем Г. Галилея, который установил законы движения свободно падающих тел и сформулировал понятие об инерциальном движении и механический принцип относительности. Но главная заслуга Галилея состоит в том, что он впервые применил для исследования природы экспериментальный метод вместе с измерением изучаемых величин и математической обработкой их результатов. Если эксперименты спорадически ставились и раньше, то математический их анализ впервые систематически стал применять именно Галилей.

Подход Галилея к изучению природы принципиально отличался от ранее существовавшего натурфилософского подхода, при котором для объяснения явлений природы придумывались априорные, т.е. не связанные с опытом и наблюдениями, чисто умозрительные схемы.

Натурфилософия, как показывает ее название, представляет собой попытку использовать априорные философские принципы для объяснения конкретных явлений природы. Такие попытки предпринимались, начиная еще с античной эпохи, когда недостаток конкретных


данных ученые стремились компенсировать общими философскими рассуждениями. Иногда при этом высказывались гениальные догадки, которые на многие столетия опережали результаты конкретных исследований. Достаточно напомнить хотя бы об атомистической гипотезе строения вещества, которая была выдвинута древнегреческим философом Левкиппом (V в. до н.э.) и более детально разработана его учеником Демокритом. Однако, по мере того как постепенно возникали конкретные науки и отделялись от нерасчлененного философского знания, натурфилософские объяснения стали тормозом для развития науки. В этом можно убедиться, сравнив взгляды на движение Аристотеля и Галилея.

Исходя из априорной натурфилософской идеи, Аристотель считал «совершенным» движение по кругу, а Галилей, опираясь на наблюдения и мысленный эксперимент, ввел понятие инерциального движения. По его мнению, тело, не подверженное воздействию каких-либо внешних сил, будет двигаться не по кругу, а равномерно по прямой траектории или оставаться в покое. Такое представление, конечно, является абстракцией и идеализацией, поскольку в действительности нельзя наблюдать такой случай, чтобы на тело не действовали какие-либо силы. Однако эта абстракция является плодотворной, ибо она мысленно продолжает тот эксперимент, который приближенно можно осуществить в действительности, когда, по мере устранения воздействия на тело целого ряда внешних сил (трения, сопротивления воздуха и т.п.), можно установить, что оно будет продолжать свое движение. С помощью мысленного эксперимента, служащего продолжением реального эксперимента, можно вообразить, что при отсутствии воздействия любых внешних сил оно будет двигаться равномерно по прямой траектории бесконечно.

Переход к экспериментальному изучению природы и математической обработке результатов экспериментов позволил Галилею открыть законы движения свободно падающих тел. Принципиальное отличие нового метода исследования природы от натурфилософского подхода состояло, следовательно, в том, что в нем гипотезы систематически проверялись опытом.

Эксперимент можно рассматривать как вопрос, обращенный к природе. При этом необходимо так сформулировать вопрос к природе, чтобы получить на него вполне однозначный и определенный ответ.

Экспериментальный метод представляет собой активное вмешательство в реальные процессы и явления природы, а не пассивное их наблюдение. Для этого следует так построить эксперимент, чтобы по


возможности максимально изолироваться от воздействия посторонних факторов, которые мешают наблюдать изучаемое явление в «чистом виде». В свою очередь, гипотеза, представляющая собой вопрос к природе, должна допускать эмпирическую проверку выводимых из нее некоторых следствий. В этих целях, начиная с Галилея, стали широко использовать математику для количественной оценки результатов экспериментов.

Таким образом, новое экспериментальное естествознание в отличие от натурфилософских догадок и умозрений прошлого стало развиваться в тесном взаимодействии теории и опыта, когда каждая гипотеза или теоретическое утверждение систематически проверяются опытом и измерениями. Именно благодаря этому Галилею удалось опровергнуть прежнее предположение, высказанное еще Аристотелем, что путь падающего тела пропорционален его скорости. Предприняв эксперименты с падением тяжелых тел (пушечных ядер), Галилей убедился, что этот путь пропорционален их ускорению, равному 9,81 м/с 2 . Из астрономических достижений Галилея следует отметить открытие спутников Юпитера, а также обнаружение пятен на Солнце и гор на Луне.

Новый крупный шаг в развитии естествознания ознаменовался открытием законов движения планет. Если Галилей имел дело с изучением движения земных тел, то немецкий астроном И. Кеплер (1571- 1630) начал исследовать движения небесных тел, а тем самым осмелился вторгнуться в область, которая раньше считалась запретной для науки. Конечно, для этого он не мог обратиться к эксперименту и поэтому для определения орбит и законов движения планет вынужден был воспользоваться многолетними систематическими наблюдениями движения планеты Марс, сделанными датским астрономом Т. Браге (1546-1601). Перепробовав множество вариантов, Кеплер остановился на гипотезе, что траекторией Марса, как и других планет, является не окружность, как думали до него, а эллипс. Результаты наблюдений Браге соответствовали этой гипотезе и, следовательно, подтверждали ее, поэтому можно было уверенно распространить полученный результат на орбиты других планет.

Открытие законов движения планет Кеплером имело неоценимое значение для развития естествознания. Оно свидетельствовало, во-первых, о том, что между движениями земных и небесных тел не существует непреодолимой пропасти, так как они подчиняются определенным естественным законам; во-вторых, сам способ открытия законов движения небесных тел в принципе не отличается от открытия законов движения земных тел.


Однако из-за невозможности осуществления экспериментов с небесными телами для исследования законов их движения пришлось обратиться к систематическим наблюдениям. Тем не менее и здесь исследования осуществлялись в тесном взаимодействии гипотез и наблюдений, с последующей тщательной проверкой выдвигаемых гипотез с помощью измерения движений небесных тел.

3.2. Классическая механика Ньютона

В своей работе по созданию теоретической механики Ньютон опирался прежде всего на открытые Галилеем принцип инерции и закон свободного падения тел. Принцип инерции относится лишь к случаям, когда на тело не действуют внешние силы. Но в реальном мире вряд ли можно наблюдать такие ситуации. Об этом свидетельствует, в частности, закон свободного падения тел.

Однако этот закон является лишь частным случаем прямолинейного равноускоренного движения тел под воздействием силы тяжести. Ньютон же поставил своей целью найти общий закон движения тел, на которые действуют любые силы, а их траектории могут быть самыми разными. Поскольку движение тела зависит от приложенной к нему силы, а сила придает телу ускорение, постольку необходимо было найти количественный, математический метод для определения ускорения. Поэтому формирование классической механики происходило по двум направлениям:

1) обобщения полученных ранее результатов, и прежде всего законов движения свободно падающих тел, открытых Галилеем, а также законов движения планет, сформулированных Кеплером;

2) создания методов для количественного, математического анализа механического движения в целом.

Известно, что Ньютон создал свой вариант дифференциального и интегрального исчислений непосредственно для решения основных проблем механики: определения мгновенной скорости движения как производной от пути по времени и ускорения как производной от скорости по времени, или второй производной. Благодаря этому ему удалось точно сформулировать основные законы динамики и закон всемирного тяготения. Теперь количественный подход к описанию движения кажется чем-то само собой разумеющимся, но в XVII- XVIII вв. это было крупнейшим завоеванием научной мысли. Для сравнения достаточно отметить, что китайская наука, несмотря на ее несомненные достижения в эмпирических областях (изобретение по-


роха, бумаги, компаса и др.), так и не смогла в то время подняться до установления количественных закономерностей движения.

Решающую же роль в становлении механики сыграл, как уже отмечалось, экспериментальный метод, который обеспечил возможность проверять все догадки, предположения и гипотезы с помощью тщательно продуманных опытов.

Ньютон, как и его предшественники, придавал большое значение наблюдениям и эксперименту, видя в них важнейший критерий для отделения ложных гипотез от истинных. Поэтому он резко выступал против допущения так называемых скрытых качеств, с помощью которых последователи Аристотеля и натурфилософы вообще пытались объяснить многие явления и процессы природы.

«Сказать, что каждый род вещей наделен особым скрытым качеством, при помощи которого он действует и производит эффекты, - указывал Ньютон, - значит ничего не сказать».

В связи с этим он выдвигает совершенно новый принцип исследования природы, который теперь характеризуют как метод принципов, а сам Ньютон называл их началами.

«Вывести два или три общих начала движения из явлений и после этого изложить, каким образом свойства и действия всех телесных вещей вытекают из этих явных начал, - было бы очень важным шагом в философии, хотя причины этих начал и не были еще открыты».

Эти начала движения и представляют собой основные законы механики, которые Ньютон точно формулирует в своем главном труде «Математические начала натуральной философии», опубликованном в 1687 г. Встречающийся в заглавии этой книги термин «натуральная философия» в XVII-XVIII вв. обозначал физику, важнейшей частью которой считалась механика. С изложения основных ее законов он и начинает свой труд.

Первый закон, который часто называют законом инерции, постулирует:

Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменить это состояние.

Конечно, в реальных условиях движения полностью освободиться от воздействия внешних сил на тело никогда нельзя. Поэтому закон инерции представляет собой идеализацию, в которой отвлекаются от действительно сложной картины движения и представляют себе картину идеальную, которую можно составить в воображении путем предельного перехода, т.е. мысленного уменьшения воздействия на тело внешних сил и перехода к такому состоянию, когда это воздействие станет равным нулю.


Раньше думали, что тело будет сразу же останавливаться после того, как прекратится действие на него силы. Так нам подсказывает интуиция, но она нас обманывает, потому что после действия силы тело пройдет еще некоторый путь. Этот путь будет тем больше, чем меньшее противодействие оказывают на тело внешние силы. Если бы было возможно полностью исключить действие внешних сил, то тело продолжало бы двигаться вечно. Такого научного подхода к анализу движения придерживался Галилей, а за ним и Ньютон. Основываясь на ошибочной интуиции, Аристотель в своей «Физике» выдвинул противоположный взгляд, который долгое время господствовал в науке.

«Движущееся тело останавливается, если сила, толкающая его, прекращает свое действие».

Таким образом, о движении и действующей на тело силе, с точки зрения Аристотеля, можно судить по наличию скорости, а не по изменению скорости или ускорению, как утверждал Ньютон.

Второй основной закон движения занимает в механике центральное место. В отличие от кажущихся представлений он показывает, что чем большая сила прилагается к телу, тем большее ускорение, а не просто скорость оно приобретает. Ведь в принципе тело, движущееся с постоянной скоростью и прямолинейно, не испытывает действия каких-либо сил.